Indoor Radon Concentration and Risk Estimation: the EURA PROJECT

D. Barca, L. Liguori Bjosvik, G. Edman, U. H. Eliasson, G. Gervino, C. Philemark, B. E. Due Svendson

Abstract


The indoor radon concentration level has been monitored in selected locations in four European countries (Iceland, Italy, Norway, and Sweden) during a yearlong measurement campaign using time-integrated passive radon dosimeters containing CR-39 track detectors. The measurements were carried out in private houses and public buildings like schools, for an exposure time of up to 6 months for each detector. Experimental data shows a great variation between different geographic areas, and often the average levels are over the acceptable radon limit of 300 Bq/m3recommended by the International Commission on Radiological Protection (ICRP). To investigate a relationship between indoor radon exposure and lung cancer, estimating the cumulative levels of exposure to indoor radon for an individual or population is necessary. We analyse the data sets and investigate the factors influencing indoor radon concentrations in order to determine the best use of the experimental information. The results show that the variables associated with indoor radon levels are strictly linked to the soil geology. Analyzing the data sets enables improved assessment of radon exposure in a given area. The average absorption effective dose equivalent for a person is computed, and the risk of lung cancer per year is evaluated.

 

Doi: 10.28991/HEF-2021-02-04-01

Full Text: PDF


Keywords


Indoor Radon-Emission Measures; Radon Background Concentration; Environment-Protection; Uranium; Thoron.

References


WHO-IARC (World Health Organization–International Agency for Research on Cancer). (1988). IARC Monograph on the Evaluation of Carcinogenic Risks to Humans: Man-made mineral fibres and Radon. IARC Monograph Vol. 43, Lyon, France. Available online: https://www.ncbi.nlm.nih.gov/books/NBK316364/pdf/Bookshelf_NBK316364.pdf (accessed on January 2021).

Barros-Dios, J. M., Barreiro, M. A., Ruano-Ravina, A., & Figueiras, A. (2002). Exposure to residential radon and lung cancer in Spain: A population-based: Case-control study. American Journal of Epidemiology, 156(6), 548–555. doi:10.1093/aje/kwf070.

Pisa, F. E., Barbone, F., Betta, A., Bonomi, M., Alessandrini, B., & Bovenzi, M. (2001). Residential radon and risk of lung cancer in an Italian alpine area. Archives of Environmental Health, 56(3), 208–215. doi:10.1080/00039890109604444.

Darby, S., Hill, D., Auvinen, A., Barros-Dios, J. M., Baysson, H., Bochicchio, F., Deo, H., Falk, R., Forastiere, F., Hakama, M., Heid, I., Kreienbrock, L., Kreuzer, M., Lagarde, F., Mäkeläinen, I., Muirhead, C., Oberaigner, W., Pershagen, G., Ruano-Ravina, A., … Doll, R. (2005). Radon in homes and risk of lung cancer: Collaborative analysis of individual data from 13 European case-control studies. British Medical Journal, 330(7485), 223–226. doi:10.1136/bmj.38308.477650.63.

Bochicchio, F. (2005). Radon epidemiology and nuclear track detectors: Methods, results and perspectives. Radiation Measurements, 40(2–6), 177–190. doi:10.1016/j.radmeas.2005.04.027.

Hihara, T., Kanasaki, M., Asai, T., Kusumoto, T., Kodaira, S., Kiriyama, H., … Fukuda, Y. (2021). Discriminative detection of laser-accelerated multi-MeV carbon ions utilizing solid state nuclear track detectors. Scientific Reports, 11(1). doi:10.1038/s41598-021-92300-1.

Cross, W. G., & Tommasino, L. (1970). Rapid reading technique for nuclear particle damage tracks in thin foils. Radiation Effects, 5(1–2), 85–89. doi:10.1080/00337577008235000.

Ilić, R., & šutej, T. (1997). Radon Monitoring Devices Based on Etched Track Detectors. In D. S.A. & I. R (Eds.), Radon Measurements by Etched Track Detectors (pp. 103–128). doi:10.1142/9789812830197_0005.

Sextro, R. G. (1990). Issues in the use of short-term radon concentration measurements for estimating long-term exposures. In Proceedings of the 1990 international symposium on radon and radon reduction technology.

Hess, C. T., Fleischer, R. L., & Turner, L. G. (1985). Field and laboratory tests of etched track detectors for 222Rn: Summer-VS-winter variations and tightness effects in maine houses. Health Physics, 49(1), 65–79. doi:10.1097/00004032-198507000-00006.

Martz, D. E., Rood, A. S., George, J. L., Pearson, M. D., & Harold Langner, G. (1991). Year-to-year variations in annual average indoor 222rn concentrations. Health Physics, 61(3), 409–413. doi:10.1097/00004032-199109000-00012.

Óskarsson, F., & St. Ásgeirsdóttir, R. (2017). Radon in Icelandic Cold Groundwater and Low-Temperature Geothermal Water. Procedia Earth and Planetary Science, 17, 229–232. doi:10.1016/j.proeps.2016.12.078.

Suman, G., Vinay Kumar Reddy, K., Sreenath Reddy, M., Gopal Reddy, C., & Yadagiri Reddy, P. (2021). Radon and thoron levels in the dwellings of Buddonithanda: a village in the environs of proposed uranium mining site, Nalgonda district, Telangana state, India. Scientific Reports, 11(1). doi:10.1038/s41598-021-85698-1.

International Commission on Radiological Protection (ICRP). (1994). Human respiratory tract model for radiological protection. ICRP Publication 66, Annals of the ICRP 24(1-4), Pergamon Press, Oxford, UK.

Sakoda, A., Ishimori, Y., Kanzaki, N., Tanaka, H., Kataoka, T., Mitsunobu, F., & Yamaoka, K. (2021). Dosimetry of radon progeny deposited on skin in air and thermal water. Journal of Radiation Research, 62(4), 634–644. doi:10.1093/jrr/rrab030.

Bruenner, S., Cichon, D., Eurin, G., Gómez, P. H., Jörg, F., Undagoitia, T. M., … Rupp, N. (2021). Radon daughter removal from PTFE surfaces and its application in liquid xenon detectors. The European Physical Journal C, 81(4). doi:10.1140/epjc/s10052-021-09047-2.

Abdo, M. A. S., Boukhair, A., Fahad, M., Ouakkas, S., Arhouni, F. E., Hakkar, M., … Al-Suhbani, M. N. (2021). Estimation of unattached and aerosol-attached activities of airborne short-lived radon progeny in indoor environments. Journal of Environmental Radioactivity, 237, 106665. doi:10.1016/j.jenvrad.2021.106665.

International Commission on Radiological Protection (ICRP). (1991). 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60, Annals of the ICRP 210-3, Pergamon Press, Oxford, UK.

UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) (1993), Sources and effects of ionizing radiation. United Nations ed., New York, E.94.IX.2. Available online: https://www.unscear.org/docs/publications/1993/UNSCEAR_1993_Report.pdf (accessed on January 2021).

Wrixon, A. D., & Great Britain. National Radiological Protection Board. (1988). Natural radiation exposure in UK dwellings. NRPB-R190. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:20002756 (accessed on January 2021).

Birchall, A., & James, A. C. (1994). Uncertainty analysis of the effective dose per unit exposure from radon progeny and implications for ICRP risk-weighting factors. Radiation Protection Dosimetry, 53(1–4), 133–140. doi:10.1093/rpd/53.1-4.133.


Full Text: PDF

DOI: 10.28991/HEF-2021-02-04-01

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Gianpiero Gervino