Alternative Fuel: Hydrogen and its Thermodynamic Behaviour
Abstract
Doi: 10.28991/HEF-2022-03-02-05
Full Text: PDF
Keywords
References
Momirlan, M., & Veziroglu, T. N. (2005). The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. International Journal of Hydrogen Energy, 30(7), 795–802. doi:10.1016/j.ijhydene.2004.10.011.
Jain, I. P. (2009). Hydrogen the fuel for 21st century. International Journal of Hydrogen Energy, 34(17), 7368–7378. doi:10.1016/j.ijhydene.2009.05.093.
Ball, M., & Wietschel, M. (2009). The future of hydrogen–opportunities and challenges. International journal of hydrogen energy, 34(2), 615-627. doi:10.1016/j.ijhydene.2008.11.014.
Cecere, D., Giacomazzi, E., & Ingenito, A. (2014). A review on hydrogen industrial aerospace applications. International Journal of Hydrogen Energy, 39(20), 10731–10747. doi:10.1016/j.ijhydene.2014.04.126.
Okolie, J. A., Patra, B. R., Mukherjee, A., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2021). Futuristic applications of hydrogen in energy, biorefining, aerospace, pharmaceuticals and metallurgy. International Journal of Hydrogen Energy, 46(13), 8885–8905. doi:10.1016/j.ijhydene.2021.01.014.
Yue, M., Lambert, H., Pahon, E., Roche, R., Jemei, S., & Hissel, D. (2021). Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews, 146, 111180. doi:10.1016/j.rser.2021.111180.
Abohamzeh, E., Salehi, F., Sheikholeslami, M., Abbassi, R., & Khan, F. (2021). Review of hydrogen safety during storage, transmission, and applications processes. Journal of Loss Prevention in the Process Industries, 72, 104569. doi:10.1016/j.jlp.2021.104569.
Liu, W., Zuo, H., Wang, J., Xue, Q., Ren, B., & Yang, F. (2021). The production and application of hydrogen in steel industry. International Journal of Hydrogen Energy, 46(17), 10548–10569. doi:10.1016/j.ijhydene.2020.12.123.
Bahrami, J., Gavin, P., Bliesner, R., Ha, S., Pedrow, P., Mehrizi-Sani, A., & Leachman, J. (2014). Effect of orthohydrogen-parahydrogen composition on performance of a proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 39(27), 14955–14958. doi:10.1016/j.ijhydene.2014.07.014.
Valenti, G., MacChi, E., & Brioschi, S. (2012). The influence of the thermodynamic model of equilibrium-hydrogen on the simulation of its liquefaction. International Journal of Hydrogen Energy, 37(14), 10779–10788. doi:10.1016/j.ijhydene.2012.04.050.
Yanxing, Z., Maoqiong, G., Yuan, Z., Xueqiang, D., & Jun, S. (2019). Thermodynamics analysis of hydrogen storage based on compressed gaseous hydrogen, liquid hydrogen and cryo-compressed hydrogen. International Journal of Hydrogen Energy, 44(31), 16833–16840. doi:10.1016/j.ijhydene.2019.04.207.
Podgorny, A. N., & Pashkov, V. V. (1988). Peculiarities of thermodynamic behaviour of liquid hydrogen. International Journal of Hydrogen Energy, 13(4), 231–237. doi:10.1016/0360-3199(88)90090-0.
Sherwin, J. A. (2022). Scattering of slow twisted neutrons by ortho-and parahydrogen. Physics Letters A, 437, 128102. doi:10.1016/j.physleta.2022.128102.
Boeva, O., Antonov, A., & Zhavoronkova, K. (2021). Influence of the nature of IB group metals on catalytic activity in reactions of homomolecular hydrogen exchange on Cu, Ag, Au nanoparticles. Catalysis Communications, 148, 106173. doi:10.1016/j.catcom.2020.106173.
Balasubramanian, R., Gunavathi, K., Jegan, R., & Roobanguru, D. (2014). A Study on the generalization of equations of state for liquids and gases. Open Journal of Modern Physics, 2014(2), 34–40. doi:10.15764/mphy.2014.02004.
Wei, Y. S., & Sadus, R. J. (2000). Equations of state for the calculation of fluid-phase equilibria. AIChE Journal, 46(1), 169–196. doi:10.1002/aic.690460119.
Chatterjee, N. D. (1991). Equations of State for Fluids and Fluid Mixtures. In Applied Mineralogical Thermodynamics (pp. 55–83). doi:10.1007/978-3-662-02716-5_3.
Alexandrov, I., Gerasimov, A., & Grigor’ev, B. (2013). Generalized Fundamental Equation of State for the Normal Alkanes (C 5-C50). International Journal of Thermophysics, 34(10), 1865–1905. doi:10.1007/s10765-013-1512-1.
Balasubramanian, R. (2006). Superheating of liquid alkali metals. International Journal of Thermophysics, 27(5), 1494-1500. doi:10.1007/s10765-006-0098-2.
Balasubramanian, R. (2007). Correlations of attainable superheat of fluid alkali metals. Journal of Nuclear Materials, 366(1-2), 272-276. doi:10.1016/j.jnucmat.2006.12.072.
Balasubramanian, R. (2013). A correlation of maximum attainable superheat and acentric factor of alkali metals. Thermochimica Acta, 566, 233–237. doi:10.1016/j.tca.2013.05.043.
Roy, S. C. (2001). Superheated liquid and its place in radiation physics. Radiation Physics and Chemistry, 61(3–6), 271–281. doi:10.1016/S0969-806X(01)00250-X.
Sobko, A. A. (2017). Description of evaporation curve for liquid metals by the generalized Van-der-Waals-Berthelot equation. Part II. Journal of Physical Science and Application, 7(1), 29-34. doi:10.17265/2159-5348/2017.01.004.
Balasubramanian, R. (2019). Thermodynamic Limit of Superheat of Fluids by a Generalized Berthelot Equation of State. American Journal of Materials Science and Application. 7(3), 60-64.
Lundstrøm, C., Michelsen, M. L., Kontogeorgis, G. M., Pedersen, K. S., & Sørensen, H. (2006). Comparison of the SRK and CPA equations of state for physical properties of water and methanol. Fluid Phase Equilibria, 247(1-2), 149-157. doi:10.1016/j.fluid.2006.06.012.
Jugan, J., & Khadar, M. A. (2002). Acoustic non-linearity parameter B/A and related molecular properties of binary organic liquid mixtures. Journal of Molecular Liquids, 100(3), 217-227. doi:10.1016/S0167-7322(02)00043-0.
Ramasamy, B., Jaffar, K. A., & Arumugam, R. Enthalpy of Vaporization of fluid alkali metals at high temperatures. Open Science Journal of Modern Physics, 5(2), 24–31.
Khomkin, A. L., & Shumikhin, A. S. (2017). The thermodynamics and transport properties of transition metals in critical point. High Temperatures - High Pressures, arXiv preprint, 46(4–5), 367–380. doi:10.48550/arXiv.1606.09609.
Boschi-Filho, H., & Buthers, C. C. (1997). Second virial coefficient for real gases at high temperature. arXiv preprint, 1-30. doi:10.48550/arXiv.cond-mat/9701185
Sadus, R. J. (2002). The Dieterici alternative to the van der Waals approach for equations of state: Second virial coefficients. Physical Chemistry Chemical Physics, 4(6), 919–921. doi:10.1039/b108822j.
Sobko, A. A. (2008). Generalized van der Waals-Berthelot equation of state. Doklady Physics, 53(8), 416–419. doi:10.1134/S1028335808080028.
Sobko, A. A. (2014). Description of evaporation curve by the generalized Van-der-Waals-Berthelot equation. Part I. Journal of Physical Science and Application, 4(8), 524-530. doi:10.17265/2159-5348/2014.08.008.
Yousefi, F., & Amoozandeh, Z. (2016). Statistical mechanics and artificial intelligence to model the thermodynamic properties of pure and mixture of ionic liquids. Chinese Journal of Chemical Engineering, 24(12), 1761-1771. doi:10.1016/j.cjche.2016.05.003.
Meng, L., & Duan, Y. Y. (2005). Prediction of the second cross virial coefficients of nonpolar binary mixtures. Fluid phase equilibria, 238(2), 229-238. doi:10.1016/j.fluid.2005.10.007.
Barbarín-Castillo, J. M., Soto-Regalado, E., & Mclure, I. A. (2000). A test of the McGlashan and Potter correlation for second virial coefficients of mixtures containing a tetraethyl substance. Journal of Chemical Thermodynamics, 32(4), 567–569. doi:10.1006/jcht.1999.0619.
Sivakumar, M., & Balasubramanian, R. (2020). Determination of second virial coefficient of gold by a modified Berthelot equation of state. Journal of Human, Earth, and Future, 1(4), 175-180. doi:10.28991/HEF-2020-01-04-02.
Poling, B. E., Prausnitz, J. M., & O’connell, J. P. (2001). Properties of gases and liquids. McGraw-Hill Education, New York, United States.
DOI: 10.28991/HEF-2022-03-02-05
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Balasubramanian R, Abishek A, Gobinath S, Jaivignesh K