Fabrication and Characterization of p-Cu2O on n-TiO2 Layer by Electrodeposition Method for Heterojunction Solar Cells Development

Norazlina Ahmad, Mohamad Fariza, Talib Azman, Ahmad Mohd Khairul, Mohd Ismail Anis Zafirah, Mohamad Arifin Nurliyana

Abstract


This study focused on the copper (I) oxide (Cu2O) that serves as an absorber layer, owing to its excellent optical properties, while titanium dioxide (TiO2) is a well-known material that has superior properties in solar cell development. In this work, the TiO2 nanorods layer was synthesised on a fluorine-doped tin oxide (FTO) glass substrate by a facile hydrothermal method followed by stacking the Cu2O layer using a low-cost electrodeposition method at different deposition times. Prior to deposition, a cyclic voltammetry (CV) measurement was performed, and the result showed that Cu2O films were successfully grown on the TiO2 nanorods layer with high uniformity. The crystallinity of the Cu2O/TiO2 film was increased when the deposition time was elevated. The strongest diffraction peak was detected in the sample deposited for 90 minutes. FE-SEM images revealed the formation of the pyramidal structure of Cu2O on the TiO2nanorod layer. The optical properties showed that the samples deposited at 60 minutes and above were red-shifted, with the estimated bandgap being slightly decreased when extending the deposition time. Meanwhile, the resistivity and sheet resistance of the as-prepared samples were increased. The performance of the solar cell was investigated, and the power energy conversion was slightly increased to 0.0267% for the heterojunction sample deposited at 90 minutes.

 

Doi: 10.28991/HEF-2021-02-04-02

Full Text: PDF


Keywords


Copper (I) Oxide (Cu2O); Titanium Dioxide (TiO2); Hydrothermal; Electrodeposition Method; Deposition Time; Heterojunction Solar Cell.

References


Fei, X., Li, F., Cao, L., Jia, G., & Zhang, M. (2015). Adsorption and photocatalytic performance of cuprous oxide/titania composite in the degradation of acid red B. Materials Science in Semiconductor Processing, 33, 9–15. doi:10.1016/j.mssp.2015.01.022.

Ma, Q., Zhang, H., Cui, Y., Deng, X., Guo, R., Cheng, X., Xie, M., & Cheng, Q. (2018). Fabrication of Cu2O/TiO2 nano-tube arrays photoelectrode and its enhanced photoelectrocatalytic performance for degradation of 2,4,6-trichlorophenol. Journal of Industrial and Engineering Chemistry, 57, 181–187. doi:10.1016/j.jiec.2017.08.020.

Kavitha, S., Jayamani, N., & Barathi, D. (2020). A study on preparation of unique TiO2/Cu2O nanocomposite with highly efficient photocatalytic reactivity under visible-light irradiation. Materials Technology, 36(11), 670–683. doi:10.1080/10667857.2020.1786785.

Dubey, P. K., Kumar, R., Tiwari, R. S., Srivastava, O. N., Pandey, A. C., & Singh, P. (2018). Surface modification of aligned TiO2 nanotubes by Cu2O nanoparticles and their enhanced photo electrochemical properties and hydrogen generation application. International Journal of Hydrogen Energy, 43(14), 6867–6878. doi:10.1016/j.ijhydene.2018.02.127.

Hussain, S., Cao, C., Usman, Z., Chen, Z., Nabi, G., Khan, W. S., Ali, Z., Butt, F. K., & Mahmood, T. (2012). Fabrication and photovoltaic characteristics of Cu 2O/TiO2 thin film heterojunction solar cell. Thin Solid Films, 522, 430–434. doi:10.1016/j.tsf.2012.08.013.

Jiang, Y., Li, M., Song, D., Li, X., & Yu, Y. (2014). A novel 3D structure composed of strings of hierarchical TiO2 spheres formed on TiO2 nanobelts with high photocatalytic properties. Journal of Solid State Chemistry, 211, 90–94. doi:10.1016/j.jssc.2013.12.002.

Sawicka-Chudy, P., Sibiński, M., Wisz, G., Rybak-Wilusz, E., & Cholewa, M. (2018). Numerical analysis and optimization of Cu2O/TiO2, CuO/TiO2, heterojunction solar cells using SCAPS. Journal of Physics: Conference Series, 1033(1), 0–10. doi:10.1088/1742-6596/1033/1/012002.

Naceur, K., Tibermacine, T., Mehiri, F., Boumaaraf, R., Labed, M., Meftah, A., … Sengouga, N. (2021). Study and optimization of Cu2O/AZO hetero-junction solar cell with different buffer layers. Optical Materials, 115, 111060. doi:10.1016/j.optmat.2021.111060.

Mitroi, M. R., Ninulescu, V., & Fara, L. (2017). Performance Optimization of Solar Cells Based on Heterojunctions with Cu2O: Numerical Analysis. Journal of Energy Engineering, 143(4), 04017005. doi:10.1061/(asce)ey.1943-7897.0000431.

Boschloo, G., & Hagfeldt, A. (2009). Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Accounts of Chemical Research, 42(11), 1819–1826. doi:10.1021/ar900138m.

Hussain, S., Cao, C., Khan, W. S., Nabi, G., Usman, Z., Majid, A., Alharbi, T., Ali, Z., Butt, F. K., Tahir, M., Tanveer, M., & Idress, F. (2014). Cu2O/TiO2 nanoporous thin-film heterojunctions: Fabrication and electrical characterization. Materials Science in Semiconductor Processing, 25, 181–185. doi:10.1016/j.mssp.2013.11.018.

Li, D., Chien, C. J., Deora, S., Chang, P. C., Moulin, E., & Lu, J. G. (2011). Prototype of a scalable core-shell Cu2O/TiO2 solar cell. Chemical Physics Letters, 501(4–6), 446–450. doi:10.1016/j.cplett.2010.11.064.

Fariza, M., Norazlina, A., Fadilah Norazni, F., Zafirah, A., Mohd Khairul, A., Azman, T., Nabihah, A., Hisyamudin Muhd Nor, N., & Izaki, M. (2019). Fabrication of Nanorods-TiO2 for Heterojunction Thin Film Application with Electrodeposit-p-Cu2O Absorbing Layer. Materials Today: Proceedings, 18, 468–472. doi:10.1016/j.matpr.2019.06.233.

Izaki, M., Sasaki, S., Mohamad, F. B., Shinagawa, T., Ohta, T., Watase, S., & Sasano, J. (2012). Effects of preparation temperature on optical and electrical characteristics of (111)-oriented Cu 2O films electrodeposited on (111)-Au film. Thin Solid Films, 520(6), 1779–1783. doi:10.1016/j.tsf.2011.08.079.

Izaki, M., Sasaki, S., Mohamad, F. B., Shinagawa, T., Ohta, T., Watase, S., & Sasano, J. (2012). Effects of preparation temperature on optical and electrical characteristics of (111)-oriented Cu 2O films electrodeposited on (111)-Au film. Thin Solid Films, 520(6), 1779–1783. doi:10.1016/j.tsf.2011.08.079.

Pagare, P. K., & Torane, A. P. (2017). Electrodeposition and characterization of pH transformed Cu2O thin films for electrochemical sensor. Journal of Materials Science: Materials in Electronics, 28(2), 1386–1392. doi:10.1007/s10854-016-5672-1.

Wang, J., Ji, G., Liu, Y., Gondal, M. A., & Chang, X. (2014). Cu2O/TiO2 heterostructure nanotube arrays prepared by an electrodeposition method exhibiting enhanced photocatalytic activity for CO2 reduction to methanol. Catalysis Communications, 46, 17–21. doi:10.1016/j.catcom.2013.11.011.

Mao, P., Liu, Y., Liu, X., Wang, Y., Liang, J., Zhou, Q., Dai, Y., Jiao, Y., Chen, S., & Yang, Y. (2017). Bimetallic AgCu/Cu2O hybrid for the synergetic adsorption of iodide from solution. Chemosphere, Vol. 180, 317–325. doi:10.1016/j.chemosphere.2017.04.038.

Jithin, M., Saravanakumar, K., Ganesan, V., Reddy, V. R., Razad, P. M., Patidar, M. M., Jeyadheepan, K., Marimuthu, G., Sreelakshmi, V. R., & Mahalakshmi, K. (2017). Growth, mechanism and properties of TiO2 nanorods embedded nanopillar: Evidence of lattice orientation effect. Superlattices and Microstructures, 109, 145–153. doi:10.1016/j.spmi.2017.04.046.

Ahmad, N., Mohamad, F., Ahmad, M. K., & Talib, A. (2019). Influence of growth temperature on tio2 nanostructures by hydrothermal synthesis. International Journal of Engineering and Advanced Technology, 8(6 Special Issue 3), 936–941. doi:10.35940/ijeat.F1063.0986S319.

Bandara, K. N. D., Jayathilaka, K. M. D. C., Dissanayake, D. P., & Jayanetti, J. K. D. S. (2021). Surface engineering of electrodeposited cuprous oxide (Cu2O) thin films: Effect on hydrophobicity and LP gas sensing. Applied Surface Science, 561, 150020. doi:10.1016/j.apsusc.2021.150020.

Chen, L. C. (2013). Review of preparation and optoelectronic characteristics BN of Cu 2O-based solar cells with nanostructure. Materials Science in Semiconductor Processing, 16(5), 1172–1185. doi:10.1016/j.mssp.2012.12.028.

Liu, Y. L., Liu, Y. C., Mu, R., Yang, H., Shao, C. L., Zhang, J. Y., Lu, Y. M., Shen, D. Z., & Fan, X. W. (2005). The structural and optical properties of Cu2O films electrodeposited on different substrates. Semiconductor Science and Technology, 20(1), 44–49. doi:10.1088/0268-1242/20/1/007.


Full Text: PDF

DOI: 10.28991/HEF-2021-02-04-02

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Norazlina Ahmad