Water Table Effects on the Behaviors of the Reinforced Marine Soil-footing System

Ramin Vali

Abstract


This study evaluates the effects of a water table on the behavior of a geogrid reinforced soil-footing system on marine soft soil layers in Qeshm Island, Iran. The main aim of this research is to recommend the optimum specification of the reinforced soil-footing system. A series of geotechnical tests were adopted to measure the properties of the soil profile. The impacts of the water table and the geogrid layer specifications were evaluated by the finite element analysis to investigate the system’s behaviors. Finally, the optimal reinforced soil footing is suggested.

 

Doi: 10.28991/HEF-2021-02-03-09

Full Text: PDF


Keywords


Finite Element Method; Geogrid Layers; Marine Soil; Reinforced Soil-Footing System; Safety Factor; Water Table.

References


Kumar, A., Walia, B. S., & Saran, S. (2005). Pressure-settlement characteristics of rectangular footings on reinforced sand. Geotechnical and Geological Engineering, 23(4), 469–481. doi:10.1007/s10706-004-4008-8.

Chen, Q., & Abu-Farsakh, M. (2015). Ultimate bearing capacity analysis of strip footings on reinforced soil foundation. Soils and Foundations, 55(1), 74–85. doi:10.1016/j.sandf.2014.12.006.

Benmebarek, S., Djeridi, S., Benmebarek, N., & Belounar, L. (2018). Improvement of bearing capacity of strip footing on reinforced sand. International Journal of Geotechnical Engineering, 12(6), 537–545. doi:10.1080/19386362.2017.1309136.

Chen, R., Luan, M., & Hao, D. (2011). Improved simulation method for soil-geogrid interaction of reinforced earth structure in FEM. Transactions of Tianjin University, 17(3), 220–228. doi:10.1007/s12209-011-1528-1.

Cicek, E., & Guler, E. (2015). Bearing capacity of strip footing on reinforced layered granular soils. Journal of Civil Engineering and Management, 21(5), 605–614. doi:10.3846/13923730.2014.890651.

Binquet, J., & Lee, K. L. (1975). Bearing Capacity Analysis of Reinforced Earth Slabs. ASCE J Geotech Eng Div, 101(12), 1257–1276. doi:10.1061/ajgeb6.0000220.

Das, B. M., Shin, E. C., & Omar, M. T. (1994). The bearing capacity of surface strip foundations on geogrid-reinforced sand and clay - a comparative study. Geotechnical and Geological Engineering, 12(1), 1–14. doi:10.1007/BF00425933.

Jahandari, S., Li, J., Saberian, M., & Shahsavarigoughari, M. (2017). Experimental study of the effects of geogrids on elasticity modulus, brittleness, strength, and stress-strain behavior of lime stabilized kaolinitic clay. GeoResJ, 13, 49–58. doi:10.1016/j.grj.2017.02.001.

Jahandari, S., Saberian, M., Zivari, F., Li, J., Ghasemi, M., & Vali, R. (2019). Experimental study of the effects of curing time on geotechnical properties of stabilized clay with lime and geogrid. International Journal of Geotechnical Engineering, 13(2), 172–183. doi:10.1080/19386362.2017.1329259.

Vali, R., Saberian, M., Li, J., Shams, G., & Gelder, P. van. (2018). Properties of geogrid-reinforced marine slope due to the groundwater level changes. Marine Georesources and Geotechnology, 36(6), 735–748. doi:10.1080/1064119X.2017.1386741.

Shin, E. C., Das, B. M., Lee, E. S., & Atalar, C. (2002). Bearing capacity of strip foundation on geogrid-reinforced sand. Geotechnical and Geological Engineering, 20(2), 169–180. doi:10.1023/A:1015059427487.

Kumar, A., & Saran, S. (2003). Bearing capacity of rectangular footing on reinforced soil. Geotechnical and Geological Engineering, 21(3), 201–224. doi:10.1023/A:1024927810216.

Kumar, A., Ohri, M. L., & Bansal, R. K. (2007). Bearing capacity tests of strip footings on reinforced layered soil. Geotechnical and Geological Engineering, 25(2), 139–150. doi:10.1007/s10706-006-0011-6.

Sharma, R., Chen, Q., Abu-Farsakh, M., & Yoon, S. (2009). Analytical modeling of geogrid reinforced soil foundation. Geotextiles and Geomembranes, 27(1), 63–72. doi:10.1016/j.geotexmem.2008.07.002.

Rashidian, V., Naeini, S. A., & Mirzakhanlari, M. (2018). Laboratory testing and numerical modelling on bearing capacity of geotextile-reinforced granular soils. International Journal of Geotechnical Engineering, 12(3), 241–251. doi:10.1080/19386362.2016.1269042.

Annual Book of ASTM Standards (2000). West Conshohocken, Vol. 04(08). PA: ASTM International, United States.

ASTM D2487-11, (2011). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). West Conshohocken, PA: ASTM International, United States.

ASTM D854-14, (2014). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. West Conshohocken, PA: ASTM International, United States.

ASTM D3080-11, (2011). Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions. West Conshohocken, PA: ASTM International, United States.

ASTM D2166-16, (2016). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. West Conshohocken, PA: ASTM International, United States.

ASTM D4318-17e1, (2017). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. West Conshohocken, PA: ASTM International, United States.

ASTM D2216-10, (2010). Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. West Conshohocken, PA: ASTM International, United States.

ASTM D7263-09. (2009). West Conshohocken, PA: ASTM International, United States.

ASTM D1586-11, (2011). Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils. West Conshohocken, PA: ASTM International, United States.

Omar, M. T., Das, B. M., Yen, S. C., Puri, V. K., & Cook, E. E. (1993). Ultimate bearing capacity of rectangular foundations on geogrid-reinforced sand. Geotechnical Testing Journal, 16(2), 246–252. doi:10.1520/gtj10041j.

Boushehrian, J. H., & Hataf, N. (2003). Experimental and numerical investigation of the bearing capacity of model circular and ring footings on reinforced sand. Geotextiles and Geomembranes, 21(4), 241–256. doi:10.1016/S0266-1144(03)00029-3.

Mosallanezhad, M., Hataf, N., & Ghahramani, A. (2008). Experimental study of bearing capacity of granular soils, reinforced with innovative grid-anchor system. Geotechnical and Geological Engineering, 26(3), 299–312. doi:10.1007/s10706-007-9166-z.

Hung, L. C., & Kim, S. R. (2012). Evaluation of vertical and horizontal bearing capacities of bucket foundations in clay. Ocean Engineering, 52, 75–82. doi:10.1016/j.oceaneng.2012.06.001.

Ding, H., Liu, Y., Zhang, P., & Le, C. (2015). Model tests on the bearing capacity of wide-shallow composite bucket foundations for offshore wind turbines in clay. Ocean Engineering, 103, 114–122. doi:10.1016/j.oceaneng.2015.04.068.

Vali, R., Mehrinejad Khotbehsara, E., Saberian, M., Li, J., Mehrinejad, M., & Jahandari, S. (2019). A three-dimensional numerical comparison of bearing capacity and settlement of tapered and under-reamed piles. International Journal of Geotechnical Engineering, 13(3), 236–248. doi:10.1080/19386362.2017.1336586.

Zhao, S., & Deng, L. (2018). Analyses of embedded piles reinforced landslides using strength reduction finite element method. International Journal of Geotechnical Engineering, 12(4), 389–401. doi:10.1080/19386362.2017.1282844.

Yoo, C. (2001). Laboratory investigation of bearing capacity behavior of strip footing on geogrid-reinforced sand slope. Geotextiles and Geomembranes, 19(5), 279–298. doi:10.1016/S0266-1144(01)00009-7.

Rostami, V., & Ghazavi, M. (2015). Analytical solution for calculation of bearing capacity of shallow foundations on geogrid-reinforced sand slope. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 39(C1), 167–182.


Full Text: PDF

DOI: 10.28991/HEF-2021-02-03-09

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Ramin Vali