Origin and Recharge Area Determination of Springs Around a Lake for Sustainability of the Lake

Paston Sidauruk, Rasi Prasetio, . Satrio, Evarista R. Pujiindiyati

Abstract


The springs surrounding the lake may be the lake's leakage or groundwater outlets that were replenished by precipitation in the mountain. The springs’ source is crucial to the lake’s water balance and, thus, to its sustainability. The water level in Lake Toba has fluctuated. The water level differential between the lowest and maximum can be as much as three meters. Springs with flow rates ranging from 2 to 5 m3/s were discovered downstream of the lake. The origin of these springs is not known yet. At one point, the locals blamed these springs for the lake's unstable water level. This study's goal is to determine if the springs came from a lake leak or from other sources, such as local groundwater. Water samples from lakes, springs, surface waters, and precipitations were taken on a regular basis. Using hydrochemical and stable isotope variations of all samples, the relationships between the springs and lake are examined. The assessment of the data showed that the lake was not the source of springs. The springs were groundwater's outlets that recharged by precipitation on Mount Simarjarungjung, which is located between 1700 and 1900 meters above sea level. These results suggest that the primary causes of lake water level fluctuation may be the reduction in groundwater flow in the lake's catchment area brought on by deforestation and changes in land use. The water flowing down the Asahan River to fuel the INALUM aluminum smelting business in the region could be the other issue.

 

Doi: 10.28991/HEF-2025-06-01-03

Full Text: PDF


Keywords


Water Stable Isotopes; Lake Toba; Local Meteoric Water Line; Springs; Water Bodies Interconnection.

References


Acreman, M. C., Meigh, J. R., & Sene, K. J. (1993). Modelling the decline in water level of Lake Toba, Indonesia. Advances in Water Resources, 16(4), 207–222. doi:10.1016/0309-1708(93)90039-I.

Chesner, C. A. (2012). The Toba Caldera Complex. Quaternary International, 258, 5–18. doi:10.1016/j.quaint.2011.09.025.

Irwandi, H., Rosid, M. S., & Mart, T. (2023). Effects of Climate change on temperature and precipitation in the Lake Toba region, Indonesia, based on ERA5-land data with quantile mapping bias correction. Scientific Reports, 13(1), 2542. doi:10.1038/s41598-023-29592-y.

Hastuti, Y. P., Nirmala, K., Hutagaol, M. P., Tanjung, D., Kriswantriyono, A., Nurussalam, W., Wulandari, Y. P., & Fatma, Y. S. (2024). Analysis of main components of Lake Toba’s water quality in different seasons. Advances in Oceanography and Limnology, 15(1), 1-7. doi:10.4081/aiol.2024.11726.

Hidayat. (2019). Trend of rainfall over Indonesian major lakes from tropical rainfall measuring mission data. IOP Conference Series: Earth and Environmental Science, 303(1), 012019. doi:10.1088/1755-1315/303/1/012019.

Irwandi, H., Syamsu Rosid, M., & Mart, T. (2019). Identification of the El Niño Effect on Lake Toba’s Water Level Variation. IOP Conference Series: Earth and Environmental Science, 406(1), 012022. doi:10.1088/1755-1315/406/1/012022.

Sidauruk, P., Prasetio, R., Subehi, L., Pratikno, B., Pujiindiyati, E. R., Satrio, & Laksminingpuri, N. (2023). Lake Toba stratification study with physical, chemical, and isotopic parameter approach. Environmental Monitoring and Assessment, 195(7), 897. doi:10.1007/s10661-023-11455-8.

Sihotang, H., Purwanto, M. Y. J., Widiatmaka, W., & Basuni, S. (2012). Model for Water Conservation of Lake Toba. Journal of Natural Resources and Environmental Management, 2(2), 65–72. doi:10.19081/jpsl.2012.2.2.65.

Irwandi, H., Rosid, M. S., & Mart, T. (2021). The effects of ENSO, climate change and human activities on the water level of Lake Toba, Indonesia: a critical literature review. Geoscience Letters, 8(1), 21. doi:10.1186/s40562-021-00191-x.

Clarke, M. C. G., Ghazali, S. A., Harahap, B., Kusyono, & Stephenson, B. (1982). Geological map of the pematangsiantar quadrangle, Sumatra, scale 1: 250 000. Geological Research and Development Centre, Bandung, Indonesia.

Aldiss, D. T., Whandoyo, R., Ghazali, S. A., & Kusyono. (1983). Geological Map of the Sidikalang and (part of) the Sinabang Quadrangle, Sumatra. Geological Research and Development Center, Bandung, Indonesia.

Catalan, J., Pla-Rabés, S., Wolfe, A. P., Smol, J. P., Rühland, K. M., Anderson, N. J., Kopáček, J., Stuchlík, E., Schmidt, R., Koinig, K. A., Camarero, L., Flower, R. J., Heiri, O., Kamenik, C., Korhola, A., Leavitt, P. R., Psenner, R., & Renberg, I. (2013). Global change revealed by palaeolimnological records from remote lakes: A review. Journal of Paleolimnology, 49(3), 513–535. doi:10.1007/s10933-013-9681-2.

Sidauruk, P., Pratikno, B., & Pujiindiyati, E. R. (2018). Isotopic characterization of precipitation, inflow, and outflow of Lake Toba as a first assessment of lake water balance study. Atom Indonesia, 44(1), 1–7. doi:10.17146/aij.2018.547.

Soeprobowati, T. R. (2015). Integrated Lake Basin Management for Save Indonesian Lake Movement. Procedia Environmental Sciences, 23, 368–374). doi:10.1016/j.proenv.2015.01.053.

Ma'mur, I., Akil, A., & Nganro, S. (2024). Flood Vulnerability of Masamba Urban Area, North Luwu Regency. Ecological Engineering & Environmental Technology (EEET), 25(12), 85-94. doi:10.12912/27197050/193618.

Wesli. (2018). The decline normal water level of Lake Toba for Integrated regional Water Management North Sumatera. ARPN Journal of Engineering and Applied Sciences, 13(1), 360–369.

-, W. (2017). Analysis Water Balance of Lake Toba as Source an Integrated Water Regional Management (IWRM) North Sumatera. International Journal of Engineering and Technology, 9(5), 3945–3953. doi:10.21817/ijet/2017/v9i5/170905182.

Heiderscheidt, E., Tesfamariam, A., Marttila, H., Postila, H., Zilio, S., & Rossi, P. M. (2022). Stable water isotopes as a tool for assessing groundwater infiltration in sewage networks in cold climate conditions. Journal of Environmental Management, 302, 114107. doi:10.1016/j.jenvman.2021.114107.

Canet-Martí, A., Morales-Santos, A., Nolz, R., Langergraber, G., & Stumpp, C. (2023). Quantification of water fluxes and soil water balance in agricultural fields under different tillage and irrigation systems using water stable isotopes. Soil and Tillage Research, 231. doi:10.1016/j.still.2023.105732.

Nigate, F., Van Camp, M., Kebede, S., & Walraevens, K. (2016). Hydrologic interconnection between the volcanic aquifer and springs, Lake Tana basin on the Upper Blue Nile. Journal of African Earth Sciences, 121, 154–167. doi:10.1016/j.jafrearsci.2016.05.015.

Dublyansky, Y. V., Klimchouk, A. B., Tokarev, S. V., Amelichev, G. N., & Spötl, C. (2019). Groundwater of the Crimean peninsula: a first systematic study using stable isotopes. Isotopes in Environmental and Health Studies, 55(5), 419–437. doi:10.1080/10256016.2019.1650743.

Zhang, L., Li, P., & He, X. (2022). Interactions between surface water and groundwater in selected tributaries of the Wei River (China) revealed by hydrochemistry and stable isotopes. Human and Ecological Risk Assessment, 28(1), 79–99. doi:10.1080/10807039.2021.2016054.

Satrio, S., Prasetio, R., Pujiindiyati, E. R., Ramadhani, M. F., & Sidauruk, P. (2024). Characterization of shallow groundwater in coastal aquifer of urbanized area using stable isotope and hydrochemical approaches. In Global Journal of Environmental Science and Management, 10, 123–136. doi:10.22034/gjesm.2024.10.SI.08.

Gibson, J. J., Edwards, T. W. D., Birks, S. J., St Amour, N. A., Buhay, W. M., McEachern, P., ... & Peters, D. L. (2005). Progress in isotope tracer hydrology in Canada. Hydrological Processes: An International Journal, 19(1), 303-327. doi:10.1002/hyp.5766.

Zhao, P., Tang, X., Zhao, P., Wang, C., & Tang, J. (2013). Identifying the water source for subsurface flow with deuterium and oxygen-18 isotopes of soil water collected from tension lysimeters and cores. Journal of Hydrology, 503, 1–10. doi:10.1016/j.jhydrol.2013.08.033.

Valdivielso, S., Vázquez-Suñé, E., Herrera, C., & Custodio, E. (2022). Characterization of precipitation and recharge in the peripheral aquifer of the Salar de Atacama. Science of The Total Environment, 806, 150271. doi:10.1016/j.scitotenv.2021.150271.

Rugel, K., Golladay, S. W., Jackson, C. R., & Rasmussen, T. C. (2016). Delineating groundwater/surface water interaction in a karst watershed: Lower Flint River Basin, southwestern Georgia, USA. Journal of Hydrology: Regional Studies, 5, 1–19. doi:10.1016/j.ejrh.2015.11.011.

Sidauruk, P., Prasetio, R., & Satrio. (2018). Hydraulic interconnections study of Seropan-Ngreneng-Bribin underground rivers in Gunung Kidul karst area using tracer technique. International Journal of Water, 12(1), 39–53. doi:10.1504/IJW.2018.090187.

Souchez, R., Lorrain, R., & Tison, J.-L. (2002). Stable water isotopes and the physical environment. Belgeo, 2, 133–44. doi:10.4000/belgeo.16199.

Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133(3465), 1702–1703. doi:10.1126/science.133.3465.1702.

Putman, A. L., Fiorella, R. P., Bowen, G. J., & Cai, Z. (2019). A Global Perspective on Local Meteoric Water Lines: Meta-analytic Insight into Fundamental Controls and Practical Constraints. Water Resources Research, 55(8), 6896–6910. doi:10.1029/2019WR025181.

Sidauruk, P., Prasetio, R., Pratikno, B., Satrio, S., Pujiindiyati, E. R., Laksminingpuri, N., Aliyanta, B., & Lubis, A. A. (2024). Local Meteoric Water Line as a Reference Line for Water Study in Java Island, Indonesia. AIP Conference Proceedings, 2967(1), 70004. doi:10.1063/5.0192927.

Yang, Q., Mu, H., Guo, J., Bao, X., & Martín, J. D. (2019). Temperature and rainfall amount effects on hydrogen and oxygen stable isotope in precipitation. Quaternary International, 519, 25–31. doi:10.1016/j.quaint.2019.01.027.

Kong, Y., & Pang, Z. (2016). A positive altitude gradient of isotopes in the precipitation over the Tianshan Mountains: Effects of moisture recycling and sub-cloud evaporation. Journal of Hydrology, 542, 222–230. doi:10.1016/j.jhydrol.2016.09.007.

Pang, Z., Kong, Y., Froehlich, K., Huang, T., Yuan, L., Li, Z., & Wang, F. (2011). Processes affecting isotopes in precipitation of an arid region. Tellus, Series B: Chemical and Physical Meteorology, 63(3), 352–359. doi:10.1111/j.1600-0889.2011.00532.x.

Chen, L., Zhu, G., Lin, X., Li, R., Lu, S., Jiao, Y., Qiu, D., Meng, G., & Wang, Q. (2024). The Complexity of Moisture Sources Affects the Altitude Effect of Stable Isotopes of Precipitation in Inland Mountainous Regions. Water Resources Research, 60(6). doi:10.1029/2023WR036084.

Alezabawy, A. K., Eissa, M., & Salem, Z. E. S. (2024). Hydrogeochemical and isotopic investigations of groundwater in the reclaimed desert located between EL Nasr canal and Mariut Tableland, NW Coast, Egypt. Scientific Reports, 14(1), 21172. doi:10.1038/s41598-024-70852-2.

Khan, M. Y. A., & Wen, J. (2021). Evaluation of physicochemical and heavy metals characteristics in surface water under anthropogenic activities using multivariate statistical methods, Garra River, Ganges Basin, India. Environmental Engineering Research, 26(6), 200280. doi:10.4491/eer.2020.280.

Nayak, A., Matta, G., & Uniyal, D. P. (2023). Hydrochemical characterization of groundwater quality using chemometric analysis and water quality indices in the foothills of Himalayas. Environment, Development and Sustainability, 25(12), 14229–14260. doi:10.1007/s10668-022-02661-4.

Hafid, F., Zeddouri, A., Zerrouki, H., Saadali, B., Ghrieb, L., & Sid, A. (2023). Use of Hydro-chemical Tools to Improve Definitions of the North-Western Sahara Aquifer System, Case of Ouargla Groundwater, Algeria. Environmental Research, Engineering and Management, 79(1), 133–147. doi:10.5755/j01.erem.79.1.33057.

Caron, B., Del Manzo, G., Villemant, B., Bartolini, A., Moreno, E., Le Friant, A., Bassinot, F., Baudin, F., & Alves, A. (2023). Marine records reveal multiple phases of Toba’s last volcanic activity. Scientific Reports, 13(1), 11575. doi:10.1038/s41598-023-37999-w.

Suzuki, R., Takahashi, H. G., Matsumoto, J. (2011). Observational Study on Regional Climate of Izu Oshima Island, Tokyo. Geographical Reports of Tokyo Metropolitan University, 46(December), 53–62.

Poage, M. A., & Chamberlain, C. P. (2001). Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: Considerations for studies of paleoelevation change. American Journal of Science, 301(1), 1–15. doi:10.2475/ajs.301.1.1.


Full Text: PDF

DOI: 10.28991/HEF-2025-06-01-03

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Paston Sidauruk, Rasi Prasetio, . Satrio, Evarista R. Pujiindiyati