Assessing Biodiversity, Health Benefits, and Knowledge of Wild Edible Plants in Rural and Urban Areas
Abstract
Doi: 10.28991/HEF-2025-06-01-09
Full Text: PDF
Keywords
References
Borelli, T., Hunter, D., Powell, B., Ulian, T., Mattana, E., Termote, C., Pawera, L., Beltrame, D., Penafiel, D., Tan, A., Taylor, M., & Engels, J. (2020). Born to eat wild: An integrated conservation approach to secure wild food plants for food security and nutrition. Plants, 9(10), 1–37. doi:10.3390/plants9101299.
Min, S., Kim, E., Dayandante, P. B., & Park, M. S. (2024). Diagnosing the status and trend of research on traditional knowledge related to non-timber forest products as food. Trees, Forests and People, 17, 100646. doi:10.1016/j.tfp.2024.100646.
Wang, Z., Wang, T., Zhang, X., Wang, J., Yang, Y., Sun, Y., Guo, X., Wu, Q., Nepovimova, E., Watson, A. E., & Kuca, K. (2024). Biodiversity conservation in the context of climate change: Facing challenges and management strategies. Science of The Total Environment, 937, 173377. doi:10.1016/j.scitotenv.2024.173377.
Marčetić, M., Samardžić, S., Ilić, T., Božić, D. D., & Vidović, B. (2022). Phenolic Composition, Antioxidant, Anti-Enzymatic, Antimicrobial and Prebiotic Properties of Prunus spinosa L. Fruits. Foods, 11(20), 3289. doi:10.3390/foods11203289.
Kowalska, K. (2021). Lingonberry (Vaccinium vitis‐idaea l.) fruit as a source of bioactive compounds with health‐promoting effects—a review. International Journal of Molecular Sciences, 22(10), 5126. doi:10.3390/ijms22105126.
Donno, D., Mellano, M. G., Cerutti, A. K., & Beccaro, G. L. (2018). Nutraceuticals in Alternative and Underutilized Fruits as Functional Food Ingredients: Ancient Species for New Health Needs. Alternative and Replacement Foods, 17, 261–282. doi:10.1016/B978-0-12-811446-9.00009-5.
Kumar, L., Chhogyel, N., Gopalakrishnan, T., Hasan, M. K., Jayasinghe, S. L., Kariyawasam, C. S., Kogo, B. K., & Ratnayake, S. (2022). Climate change and future of agri-food production. Future Foods, 49–79, Academic Press, Cambridge, United States. doi:10.1016/b978-0-323-91001-9.00009-8.
Casari, S., Di Paola, M., Banci, E., Diallo, S., Scarallo, L., Renzo, S., Gori, A., Renzi, S., Paci, M., de Mast, Q., Pecht, T., Derra, K., Kaboré, B., Tinto, H., Cavalieri, D., & Lionetti, P. (2022). Changing Dietary Habits: The Impact of Urbanization and Rising Socio-Economic Status in Families from Burkina Faso in Sub-Saharan Africa. Nutrients, 14(9), 1782. doi:10.3390/nu14091782.
Sefa, A. (2022). Importance of edible wild plants in world food security: The case of Turkey. International Journal of Agricultural Science and Food Technology, 8(3), 209–213. doi:10.17352/2455-815x.000165.
Singh, P. K., & Chudasama, H. (2021). Pathways for climate change adaptations in arid and semi-arid regions. Journal of Cleaner Production, 284, 124744. doi:10.1016/j.jclepro.2020.124744.
Li, H., Wang, P., Li, Z., Jin, S., Xu, C., Liu, S., Zhang, Z., & Xu, L. (2022). An application of three different field methods to monitor changes in Urumqi Glacier No. 1, Chinese Tien Shan, during 2012-18. Journal of Glaciology, 68(267), 41–53. doi:10.1017/jog.2021.71.
Huang, J., Yu, H., Guan, X., Wang, G., & Guo, R. (2016). Accelerated dryland expansion under climate change. Nature Climate Change, 6(2), 166–171. doi:10.1038/nclimate2837.
Abdi, O. A., Glover, E. K., & Luukkanen, O. (2013). Causes and impacts of land degradation and desertification: Case study of the Sudan. International Journal of Agriculture and Forestry, 3(2), 40-51. doi:10.5923/j.ijaf.20130302.03.
Schierhorn, F., Hofmann, M., Adrian, I., Bobojonov, I., & Müller, D. (2020). Spatially varying impacts of climate change on wheat and barley yields in Kazakhstan. Journal of Arid Environments, 178, 104164. doi:10.1016/j.jaridenv.2020.104164.
Sariyeva, G. E., Turdieva, M. K., Aitbaeva, Z. T., Kadyrkulova, S. K., Kachekova, S. K., & Kudaibergenova, A. K. (2019). Conservation of Diversity of Local Fruit and Wild Berry Cultivars in the Issyk-Kul Region of Kyrgyzstan. Vegetable Crops of Russia, 3(3), 109–115. doi:10.18619/2072-9146-2019-3-109-115.
Turdieva, M., Bernis-Fonteneau, A., Esenalieva, M., Kayimov, A., Saparmyradov, A., Safaraliev, K., Shalpykov, K., Colangelo, P., & Jarvis, D. I. (2024). A Regional Perspective of Socio-Ecological Predictors for Fruit and Nut Tree Varietal Diversity Maintained by Farmer Communities in Central Asia. World, 5(1), 22–35. doi:10.3390/world5010002.
Jalilova, G., & Vacik, H. (2012). Local people’s perceptions of forest biodiversity in the walnut fruit forests of Kyrgyzstan. International Journal of Biodiversity Science, Ecosystem Services & Management, 8(3), 204–216. doi:10.1080/21513732.2012.696557.
Khojimatov, O. K., Abdiniyazova, G. J., & Pak, V. V. (2015). Some wild growing plants in traditional foods of Uzbekistan. Journal of Ethnic Foods, 2(1), 25–28. doi:10.1016/j.jef.2015.02.005.
Danilova, A. N., Isakova, E. A., Sumbembayev, A. A., Lagus, O. A., Anifrieva, O. A., & Vdovina, T. A. (2024). Species diversity of wild fruit plants of the natural flora of the Kazakh Altai. Bulletin of the Karaganda University “Biology Medicine Geography Series,” 11629(4), 27–34. doi:10.31489/2024bmg4/27-34.
Sitpayeva, G. T., Kudabayevа, G. M., Dimeyeva, L. A., Gemejiyeva, N. G., & Vesselova, P. V. (2020). Crop wild relatives of Kazakhstani Tien Shan: Flora, vegetation, resources. Plant Diversity, 42(1), 19–32. doi:10.1016/j.pld.2019.10.003.
Lednev, S., Semenkov, I., Sharapova, A., & Koroleva, T. (2021). The impact of fire on plant biodiversity in the semideserts of Central Kazakhstan. E3S Web of Conferences, 265, 1020. doi:10.1051/e3sconf/202126501020.
Pozdnyakova, Y., Sailau, A., Solyanov, D., Aitisheva, L., Tatina, Y., & Britko, V. (2023). Diversity of early flowering plants of the Ulytau mountains (Central Kazakhstan). Biosystems Diversity, 31(3), 261–268. doi:10.15421/012329.
Pozdnyakova, Y., Omarova, G., Murzatayeva, A., & Tankibaeva, N. (2022). Biodiversity of wild spice plants of the Central Kazakhstan region and their medicinal potential. Biodiversitas Journal of Biological Diversity, 23(9). doi:10.13057/biodiv/d230928.
Keukenov, E. B., & Dzhanaleeva, K. M. (2021). Use of Biological Resources of the Karkaraly Mountains. Hydrometeorology and Ecology, 103(4), 20–28. doi:10.54668/2789-6323-2021-103-4-20-28.
Maksutova, P.A., Dyusekeyeva, Sh.E., & Kulmaganbetova, A.O. (2005). Physical geography of the Karaganda region. Karaganda, Karaganda. (In Russian).
Myrzaly, G.Zh., Ivlev, V.I., Ishmuratova, M.Yu., & Matveev, A.N. (2016). Key to vascular plants of the Ulytau Mountains. Publishing House of Polygraphist LLP, Karaganda. (In Russian).
Bridson, D., & Forman, L. (1995). Herbarium: Handbook. Russian Edition. Publishing House of the Royal Botanic Gardens, Kew, United Kingdom. (In Russian).
Shcherbakov, A.V., & Mayorov, S.V. (2006). Inventory of flora and the basis of herbarium business: Methodological recommendations. Association of scientific publications of KMK, Moscow, Russia. (In Russian).
Baitenov, M. (1999). Flora of Kazakhstan. Volume 1. Ġylym, Almaty, Kazakhstan. (In Russian).
Bilek, M., Bilek, M., Stawarczyk, K., Kuźniar, P., Szwerc, W., & Kocjan, R. (2017). Time-related variability of the mineral content in birch tree sap. Journal of Elementology, 22(2): 497-515. doi:10.5601/jelem.2016.21.3.1245.
Tolmacheva, A. A., Rogozhin, E. A., & Deryabin, D. G. (2014). Antibacterial and quorum sensing regulatory activities of some traditional Eastern-European medicinal plants. Acta Pharmaceutica, 64(2), 173–186. doi:10.2478/acph-2014-0019.
Gründemann, C., Gruber, C. W., Hertrampf, A., Zehl, M., Kopp, B., & Huber, R. (2011). An aqueous birch leaf extract of Betula pendula inhibits the growth and cell division of inflammatory lymphocytes. Journal of Ethnopharmacology, 136(3), 444–451. doi:10.1016/j.jep.2011.05.018.
Penkov, D., Andonova, V., Delev, D., Kostadinov, I., & Kassarova, M. (2018). Antioxidant Activity of Dry Birch (Betula Pendula) Leaves Extract. Folia Medica, 60(4), 571–579. doi:10.2478/folmed-2018-0035.
Os'kina, O.A., Pashinskii, V.G., Kanakina, T.A., Povet'yeva, T.N., & Gribel, N.V. (1999). Some mechanisms of the antiulcerous effect of drugs of plant origin. Experimental and Clinical Pharmacology, 62, 39. (In Russian).
Masullo, M., Cerulli, A., Olas, B., Pizza, C., & Piacente, S. (2014). Giffonins A–I, Antioxidant Cyclized Diarylheptanoids from the Leaves of the Hazelnut Tree (Corylus avellana), Source of the Italian PGI Product “Nocciola di Giffoni.” Journal of Natural Products, 78(1), 17–25. doi:10.1021/np5004966.
Cerulli, A., Masullo, M., Montoro, P., Hošek, J., Pizza, C., & Piacente, S. (2018). Metabolite profiling of “green” extracts of Corylus avellana leaves by 1H NMR spectroscopy and multivariate statistical analysis. Journal of Pharmaceutical and Biomedical Analysis, 160, 168–178. doi:10.1016/j.jpba.2018.07.046.
Shataer, D., Li, J., Duan, X. M., Liu, L., Xin, X. L., & Aisa, H. A. (2021). Chemical Composition of the Hazelnut Kernel (Corylus avellana L.) and Its Anti-inflammatory, Antimicrobial, and Antioxidant Activities. Journal of Agricultural and Food Chemistry, 69(14), 4111–4119. doi:10.1021/acs.jafc.1c00297.
Kurkina, A. V. (2015). Determination of Total Flavonoids in Siberian Hawthorn Fruit. Pharmaceutical Chemistry Journal, 48(12), 800–803. doi:10.1007/s11094-015-1199-7.
Kurkin, V. A., Zaitceva, E. N., Morozova, T. V., Pravdivtseva, O. E., Dubishchev, A. V., Kurkina, A. V., Avdeeva, A. V., Agapov, A. I., & Belousov, M. V. (2018). The study of the Crataegus sanguinea Pall. Extractsdiuretic and antidepressant action. Bulletin of Siberian Medicine, 17(4), 65–71. doi:10.20538/1682-0363-2018-4-65-71.
Sun, J., Gao, G., Gao, Y. L., Xiong, li J., Li, X., Guo, J., & Zhang, Y. (2013). Experimental Research on the In Vitro Antitumor Effects of Crataegus sanguinea. Cell Biochemistry and Biophysics, 67(1), 207–213. doi:10.1007/s12013-013-9535-6.
Koshcheev, A.K. (1987). Wild edible plants in our diet. Book on Demand, Moscow, Russia. (In Russian).
Mikulic-Petkovsek, M., Stampar, F., Veberic, R., & Sircelj, H. (2016). Wild Prunus Fruit Species as a Rich Source of Bioactive Compounds. Journal of Food Science, 81(8), C1928–C1937. doi:10.1111/1750-3841.13398.
Moosavian, S. P., Maharat, M., Chambari, M., Moradi, F., & Rahimlou, M. (2022). Effects of tart cherry juice consumption on cardio-metabolic risk factors: A systematic review and meta-analysis of randomized-controlled trials. Complementary Therapies in Medicine, 71, 102883. doi:10.1016/j.ctim.2022.102883.
Dudchenko, L.G. (1989). Spicy-aromatic and spicy-taste plants. Naukova Dumka, Kiev, Ukraine. (In Russian).
Lee, H. Y., Weon, J. B., Ryu, G., Yang, W. S., Kim, N. Y., Kim, M. K., & Ma, C. J. (2017). Neuroprotective effect of Aronia melanocarpa extract against glutamate-induced oxidative stress in HT22 cells. BMC Complementary and Alternative Medicine, 17(1), 207. doi:10.1186/s12906-017-1716-1.
Shamruk, S. (1989). Medicinal plants: Collection, preparation, application. Urajay, Minsk, Belarus. (In Russian).
Park, C. H., Kim, J. H., Lee, E. B., Hur, W., Kwon, O. J., Park, H. J., & Yoon, S. K. (2017). Aronia melanocarpa Extract Ameliorates Hepatic Lipid Metabolism through PPARγ2 Downregulation. PLoS ONE, 12(1), 169685. doi:10.1371/journal.pone.0169685.
Molchanov, G.I. (1991). Dishes from medicinal plants. Kavkazskaya Zdravnitsa, Mineral'nyye Vody, Russia. (In Russian).
Rafieian-Kopaei, M., Khoshdel, A., Kheiri, S., & Shemian, R. (2016). Cotoneaster: A safe and easy way to reduce neonatal jaundice. Journal of Clinical and Diagnostic Research, 10(4), SC01–SC03. doi:10.7860/JCDR/2016/17084.7574.
Maznev, N.I. (2004). Encyclopedia of medicinal plants. Martin, Moscow, Russia. (In Russian).
Noratto, G. D., Chew, B. P., & Atienza, L. M. (2017). Red raspberry (Rubus idaeus L.) intake decreases oxidative stress in obese diabetic (db/db) mice. Food Chemistry, 227, 305–314. doi:10.1016/j.foodchem.2017.01.097.
Xu, Y., Li, L. Z., Cong, Q., Wang, W., Qi, X. L., Peng, Y., & Song, S. J. (2017). Bioactive lignans and flavones with in vitro antioxidant and neuroprotective properties from Rubus idaeus rhizome. Journal of Functional Foods, 32, 160–169. doi:10.1016/j.jff.2017.02.022.
Zia-Ul-Haq, M., Riaz, M., De Feo, V., Jaafar, H. Z. E., & Moga, M. (2014). Rubus fruticosus L.: Constituents, biological activities and health related uses. Molecules, 19(8), 10998–11029. doi:10.3390/molecules190810998.
Contreras, M., Loeza, P. D., Villegas, J., Farias, R., & Santoyo, G. (2016). A glimpse of the endophytic bacterial diversity in roots of blackberry plants (Rubus fruticosus). Genetics and Molecular Research, 15(3), 1-10. doi:10.4238/gmr.15038542.
Weli, A. M., Al-Saadi, H. S., Al-Fudhaili, R. S., Hossain, A., Putit, Z. B., & Jasim, M. K. (2020). Cytotoxic and antimicrobial potential of different leaves extracts of R. fruticosus used traditionally to treat diabetes. Toxicology Reports, 7, 183–187. doi:10.1016/j.toxrep.2020.01.006.
Tao, Y., Bao, J., Zhu, F., Pan, M., Liu, Q., & Wang, P. (2023). Ethnopharmacology of Rubus idaeus Linnaeus: A critical review on ethnobotany, processing methods, phytochemicals, pharmacology and quality control. Journal of Ethnopharmacology, 302, 115870. doi:10.1016/j.jep.2022.115870.
Nybom, H., & Werlemark, G. (2015). Beauty is as beauty does - Culinary and medicinal use of rosehips. Acta Horticulturae, 1064, 137–150. doi:10.17660/ActaHortic.2015.1064.17.
Babis, A., & Kucharska, A. Z. (2004). Usability of the fruits of Rosa spinosissima and Rosa hybrida to the production of turbid multivitamin juices. Bulletin of Faculty of Pharmacy, 2(3), 18–24.
Bozhuyuk, M. R., Ercisli, S., Ayed, R. Ben, Jurikova, T., Fidan, H., Ilhan, G., Ozkan, G., & Sagbas, H. I. (2020). Compositional diversity in fruits of rowanberry (Sorbus aucuparia L.) genotypes originating from seeds. Genetika, 52(1), 55–65. doi:10.2298/GENSR2001055B.
Mrkonjić, Ž., Marić, A., Kovačević, S., Vidaković, A., Sarić-Krsmanović, M., & Radosavljević, M. (2017). Antioxidant and antiproliferative effects of ethanol extracts of Sorbus aucuparia L. in vitro. Agriculture & Forestry, 63(4), 189–198. doi:10.17707/agricultforest.63.4.16.
Lee, T. K., Roh, H. S., Yu, J. S., Kwon, D. J., Kim, S. Y., Baek, K. H., & Kim, K. H. (2017). A novel cytotoxic activity of the fruit of Sorbus commixta against human lung cancer cells and isolation of the major constituents. Journal of Functional Foods, 30, 1–7. doi:10.1016/j.jff.2017.01.003.
Donno, D., Mellano, M. G., De Biaggi, M., Riondato, I., Rakotoniaina, E. N., & Beccaro, G. L. (2018). New findings in prunus padus l. Fruits as a source of natural compounds: Characterization of metabolite profiles and preliminary evaluation of antioxidant activity. Molecules, 23(4), 725. doi:10.3390/molecules23040725.
Stabnikova, O., Stabnikov, V., & Paredes-López, O. (2024). Fruits of Wild-Grown Shrubs for Health Nutrition. Plant Foods for Human Nutrition, 79(1), 20–37. doi:10.1007/s11130-024-01144-3.
Telichowska, A., Kobus-cisowska, J., & Szulc, P. (2020). Phytopharmacological possibilities of bird cherry prunus padus l. And prunus serotina l. species and their bioactive phytochemicals. Nutrients, 12(7), 1–21. doi:10.3390/nu12071966.
Kirillova, Ya.O. (2012). On useful juice from shadberry. International Journal of Applied and Fundamental Research, 1, 161.
Lachowicz, S., Wiśniewski, R., Ochmian, I., Drzymała, K., & Pluta, S. (2019). Anti-microbiological, anti-hyperglycemic and anti-obesity potency of natural antioxidants in fruit fractions of saskatoon berry. Antioxidants, 8(9), 397. doi:10.3390/antiox8090397.
Tian, Y., Puganen, A., Alakomi, H. L., Uusitupa, A., Saarela, M., & Yang, B. (2018). Antioxidative and antibacterial activities of aqueous ethanol extracts of berries, leaves, and branches of berry plants. Food Research International, 106, 291–303. doi:10.1016/j.foodres.2017.12.071.
Pinacho, R., Cavero, R. Y., Astiasarán, I., Ansorena, D., & Calvo, M. I. (2015). Phenolic compounds of blackthorn (Prunus spinosa L.) and influence of in vitro digestion on their antioxidant capacity. Journal of Functional Foods, 19, 49–62. doi:10.1016/j.jff.2015.09.015.
Boyarskikh, I. G. (2021). Variability of the individual-group composition of polyphenols of the fruits and leaves of blue honeysuckle samples of different ecological and geographical origin in the OB forest-steppe. Khimiya Rastitel’nogo Syr’ya, 2(2), 145–154. doi:10.14258/JCPRM.2021027651.
Česoniene, L., Daubaras, R., Vencloviene, J., & Viškelis, P. (2010). Biochemical and agro-biological diversity of Viburnum opulus genotypes. Central European Journal of Biology, 5(6), 864–871. doi:10.2478/s11535-010-0088-z.
Konarska, A., & Domaciuk, M. (2018). Differences in the fruit structure and the location and content of bioactive substances in Viburnum opulus and Viburnum lantana fruits. Protoplasma, 255(1), 25–41. doi:10.1007/s00709-017-1130-z.
Eken, A., Yücel, O., Boşgelmez, İ. İ., Baldemir, A., Çubuk, S., Çermik, A. H., Ünlü Endirlik, B., Bakir, E., Yildizhan, A., Güler, A., & Koşar, M. (2017). Investigation of the protective effect of Viburnum opulus fruit extract against ischemia/reperfusion induced oxidative stress in lung transplantation in rats. Kafkas University Faculty of Veterinary Medicine Journal, 23(3), 437–444. doi:10.9775/kvfd.2016.16964. (In Turkish).
Kuvshinchikov, N. N. (2020). The use of caragana (Caragana arborescens) as a promising plant for the food industry and other industries. Modern Science and Its Resource Provision: An Innovative Paradigm: Collection of Articles of the VII International Scientific and Practical Conference, 161–164, International Center for Scientific Partnership "New Science.", Petrozavodsk, Russia. (In Russian).
He, Q. S., Zhang, L., Fan, Z. Y., Feng, G., Wang, F. J., Liu, Z. Q., Tang, T., & Kuang, S. X. (2017). Protective effects of total flavonoids in Caragana against hypoxia/reoxygenation-induced injury in human brain microvascular endothelial cells. Biomedicine and Pharmacotherapy, 89, 316–322. doi:10.1016/j.biopha.2017.01.106.
Pozdnyakov, D. I., Pozdnyakova, A. E., Adzhiahmetova, S. L., Chervonnaya, N. M., Zolotych, D. S., Lyakhova, N. S., & Miroshnichenko, K. A. (2019). Antihypoxic and anti-ischemic properties of the North Caucasus flora plant extracts. Boletin Latinoamericano y Del Caribe de Plantas Medicinales y Aromaticas, 18(5), 504–517. doi:10.35588/blacpma.19.18.5.33.
Nazmutdinov, B.R., Nazmutdinova, G.D., & Galikeeva, I.Z. (2019). Biological value of black currant fruits (Ribes nigrum L.) and their use in food production. Food technologies and biotechnologies: Materials of the XVI All-Russian Conference of Young Scientists, Graduate Students and Students with International Participation, dedicated to the 150th anniversary of the Periodic Table of Chemical Elements, Kazan, Russia. (In Russian).
Elsadek, M. F., Almoajel, A., & Farahat, M. F. (2022). Ameliorative effects of ribes rubrum oil against gastric ulcers caused by indomethacin in experimental models. Saudi Journal of Biological Sciences, 29(1), 30–34. doi:10.1016/j.sjbs.2021.10.029.
Kranz, S., Guellmar, A., Olschowsky, P., Tonndorf-Martini, S., Heyder, M., Pfister, W., Reise, M., & Sigusch, B. (2020). Antimicrobial Effect of Natural Berry Juices on Common Oral Pathogenic Bacteria. Antibiotics, 9(9), 533. doi:10.3390/antibiotics9090533.
Gülmez, G., Şen, A., Şekerler, T., Algül, F. K., Çilingir-Kaya, Ö. T., & Şener, A. (2022). The antioxidant, anti-inflammatory, and antiplatelet effects of Ribes rubrum L. fruit extract in the diabetic rats. Journal of Food Biochemistry, 46(7), 14124. doi:10.1111/jfbc.14124.
Mikson, D. S., & Roshchin, V. I. (2019). The Siberian Larch Group Composition and Acid Needles at Different Vegetation Periods. Chemistry of Plant Raw Material, 4, 207–214. doi:10.14258/jcprm.2019045477.
Raal, A., Nisuma, K., & Meos, A. (2018). Pinus sylvestris L. and other conifers as natural sources of ascorbic acid. Journal of Pharmacy and Pharmacognosy Research, 6(2), 89–95. doi:10.56499/jppres17.287_6.2.89.
Shikov, A. N., Tsitsilin, A. N., Pozharitskaya, O. N., Makarov, V. G., & Heinrich, M. (2017). Traditional and current food use of wild plants listed in the Russian Pharmacopoeia. Frontiers in Pharmacology, 8. doi:10.3389/fphar.2017.00841.
Kubczak, M., Khassenova, A. B., Skalski, B., Michlewska, S., Wielanek, M., Skłodowska, M., Aralbayeva, A. N., Nabiyeva, Z. S., Murzakhmetova, M. K., Zamaraeva, M., Bryszewska, M., & Ionov, M. (2022). Hippophae rhamnoides L. leaf and twig extracts as rich sources of nutrients and bioactive compounds with antioxidant activity. Scientific Reports, 12(1), 1095. doi:10.1038/s41598-022-05104-2.
Korkus, E., Dąbrowski, G., Szustak, M., Czaplicki, S., Madaj, R., Chworoś, A., Koziołkiewicz, M., Konopka, I., & Gendaszewska-Darmach, E. (2022). Evaluation of the anti-diabetic activity of sea buckthorn pulp oils prepared with different extraction methods in human islet EndoC-betaH1 cells. NFS Journal, 27, 54–66. doi:10.1016/j.nfs.2022.05.002.
Ollinger, N., Neuhauser, C., Schwarzinger, B., Wallner, M., Schwarzinger, C., Blank-Landeshammer, B., Hager, R., Sadova, N., Drotarova, I., Mathmann, K., Karamouzi, E., Panopoulos, P., Rimbach, G., Lüersen, K., Weghuber, J., & Röhrl, C. (2022). Anti-Hyperglycemic Effects of Oils and Extracts Derived from Sea Buckthorn – A Comprehensive Analysis Utilizing In Vitro and In Vivo Models. Molecular Nutrition and Food Research, 66(12), 2101133. doi:10.1002/mnfr.202101133.
Yue, X. F., Shang, X., Zhang, Z. J., & Zhang, Y. N. (2017). Phytochemical composition and antibacterial activity of the essential oils from different parts of sea buckthorn (Hippophae rhamnoides L.). Journal of Food and Drug Analysis, 25(2), 327–332. doi:10.1016/j.jfda.2016.10.010.
Dupak, R., Hrnkova, J., Simonova, N., Kovac, J., Ivanisova, E., Kalafova, A., Schneidgenova, M., Prnova, M. S., Brindza, J., Tokarova, K., & Capcarova, M. (2022). The consumption of sea buckthorn (Hippophae rhamnoides L.) effectively alleviates type 2 diabetes symptoms in spontaneous diabetic rats. Research in Veterinary Science, 152, 261–269. doi:10.1016/j.rvsc.2022.08.022.
Salnikova, N. A., Tsibizova, A. A., & Shur Yu, V. (2018). The prospects for the use of plants in the genus Elaeagnus in the pharmaceutical and food industry. Bulletin of Science and Practice, 4(12), 134-147.
Belov, N.V. (2005). Calendula, marshmallow, celandine and other folk medicinal plants in a large encyclopedia of herbal medicine. Harvest, Moscow, Russia. (In Russian).
Sedaghat, R., Taab, Y., Kiasalari, Z., Afshin-Majd, S., Baluchnejadmojarad, T., & Roghani, M. (2017). Berberine ameliorates intrahippocampal kainate-induced status epilepticus and consequent epileptogenic process in the rat: Underlying mechanisms. Biomedicine & Pharmacotherapy, 87, 200–208. doi:10.1016/j.biopha.2016.12.109.
Šárka, E., Sinica, A., Smrčková, P., & Sluková, M. (2023). Non-Traditional Starches, Their Properties, and Applications. Foods, 12(20), 3794. doi:10.3390/foods12203794.
Lorenz, P., Heinrich, M., Garcia-Käufer, M., Grunewald, F., Messerschmidt, S., Herrick, A., Gruber, K., Beckmann, C., Knoedler, M., Huber, R., Steinborn, C., Stintzing, F. C., & Gründemann, C. (2016). Constituents from oak bark (Quercus robur L.) inhibit degranulation and allergic mediator release from basophils and mast cells in vitro. Journal of Ethnopharmacology, 194, 642–650. doi:10.1016/j.jep.2016.10.027.
Piazza, S., Fumagalli, M., Martinelli, G., Pozzoli, C., Maranta, N., Angarano, M., Sangiovanni, E., & Dell’Agli, M. (2022). Hydrolyzable Tannins in the Management of Th1, Th2 and Th17 Inflammatory-Related Diseases. Molecules, 27(21), 7593. doi:10.3390/molecules27217593.
Ceccanti, C., Landi, M., Benvenuti, S., Pardossi, A., & Guidi, L. (2018). Mediterranean Wild Edible Plants: Weeds or “New functional crops”? Molecules, 23(9), 2299. doi:10.3390/molecules23092299.
Uprety, Y., Poudel, R. C., Shrestha, K. K., Rajbhandary, S., Tiwari, N. N., Shrestha, U. B., & Asselin, H. (2012). Diversity of use and local knowledge of wild edible plant resources in Nepal. Journal of Ethnobiology and Ethnomedicine, 8(1), 16. doi:10.1186/1746-4269-8-16.
Dejene, T., Agamy, M. S., Agúndez, D., & Martin-Pinto, P. (2020). Ethnobotanical survey of wild edible fruit tree species in lowland areas of Ethiopia. Forests, 11(2), 177. doi:10.3390/f11020177.
Ford-Lloyd, B. V., Schmidt, M., Armstrong, S. J., Barazani, O., Engels, J., Hadas, R., Hammer, K., Kell, S. P., Kang, D., Khoshbakht, K., Li, Y., Long, C., Lu, B. R., Ma, K., Nguyen, V. T., Qiu, L., Ge, S., Wei, W., Zhang, Z., & Maxted, N. (2011). Crop wild relatives - Undervalued, underutilized and under threat? BioScience, 61(7), 559–565. doi:10.1525/bio.2011.61.7.10.
Tahir, M., Abrahim, A., Beyene, T., Dinsa, G., Guluma, T., Alemneh, Y., Van Damme, P., Geletu, U. S., & Mohammed, A. (2023). The traditional use of wild edible plants in pastoral and agro-pastoral communities of Mieso District, eastern Ethiopia. Tropical Medicine and Health, 51(1), 10. doi:10.1186/s41182-023-00505-z.
Amin, M., Aziz, M. A., Pieroni, A., Nazir, A., Al-Ghamdi, A. A., Kangal, A., Ahmad, K., & Abbasi, A. M. (2023). Edible wild plant species used by different linguistic groups of Kohistan Upper Khyber Pakhtunkhwa (KP), Pakistan. Journal of Ethnobiology and Ethnomedicine, 19(1), 6. doi:10.1186/s13002-023-00577-5.
Suwardi, A. B., Syamsuardi, Mukhtar, E., & Nurainas. (2023). The diversity and traditional knowledge of wild edible fruits in Bengkulu, Indonesia. Ethnobotany Research and Applications, 25. doi:10.32859/era.25.15.1-17.
Masresha, G., Melkamu, Y., & Walle, G. C. (2023). Ethnobotanical Study on Wild Edible Plants in Metema District, Amhara Regional State, Ethiopia. International Journal of Forestry Research, 2023, 1–10. doi:10.1155/2023/9243343.
Cacatian, S. B., & Tabian, J. L. T. (2023). Floristic composition and diversity of indigenous wild food resources in northwestern Cagayan, Philippines. Biodiversitas Journal of Biological Diversit, 24(4), 2324–2333. doi:10.13057/biodiv/d240446.
Gajurel, P. R., Singh, B., Kashung, S., Adhikary, P., Nopi, S., Barman, R., Yakang, T., Doni, T., & Gogoi, D. (2022). Foods from the wild: A review on the diversity and use pattern of wild edible plants of Arunachal Himalaya for sustainable management. Plant Science Today, 10(1), 80-90. doi:10.14719/pst.1857.
Xie, J., Liu, F., Jia, X., Zhao, Y., Liu, X., Luo, M., He, Y., Liu, S., & Wu, F. (2022). Ethnobotanical study of the wild edible and healthy functional plant resources of the Gelao people in northern Guizhou, China. Journal of Ethnobiology and Ethnomedicine, 18(1), 72. doi:10.1186/s13002-022-00572-2.
Jia, X., Zhao, Y., Zhu, Y., Zeng, X., Liang, X., Xie, J., & Wu, F. (2022). Ethnobotany of wild edible plants in multiethnic areas of the Gansu–Ningxia–Inner Mongolia junction zone. Journal of Ethnobiology and Ethnomedicine, 18(1), 53. doi:10.1186/s13002-022-00549-1.
Ghanimi, R., Ouhammou, A., Ahouach, A., & Cherkaoui, M. (2022). Ethnobotanical study on wild edible plants traditionally used by Messiwa people, Morocco. Journal of Ethnobiology and Ethnomedicine, 18(1), 16. doi:10.1186/s13002-022-00500-4.
Syamsuardi, Mukhtar, E., Nurainas, & Suwardi, A. B. (2022). Diversity and use of wild edible fruits in the Bukit Rimbang-Bukit Baling Wildlife Reserve, Kampar, Riau, Indonesia. Biodiversitas, 23(10), 5035–5042. doi:10.13057/biodiv/d231009.
León-Lobos, P., Díaz-Forestier, J., Díaz, R., Celis-Diez, J. L., Diazgranados, M., & Ulian, T. (2022). Patterns of Traditional and Modern Uses of Wild Edible Native Plants of Chile: Challenges and Future Perspectives. Plants, 11(6), 744. doi:10.3390/plants11060744.
Meitei, L. R., De, A., & Mao, A. A. (2022). An ethnobotanical study on the wild edible plants used by forest dwellers in Yangoupokpi Lokchao Wildlife Sanctuary, Manipur, India. Ethnobotany Research and Applications, 23, 1–22. doi:10.32859/era.23.15.1-25.
Al-Fatimi, M. (2021). Wild edible plants traditionally collected and used in southern Yemen. Journal of Ethnobiology and Ethnomedicine, 17(1), 49. doi:10.1186/s13002-021-00475-8.
Awang-Kanak, F. (2021). Plant parts and preparation of edible plants by indigenous Sama-Bajau and Dusun people in Kota Belud, Sabah. IOP Conference Series: Earth and Environmental Science, 756(1), 12023. doi:10.1088/1755-1315/756/1/012023.
Gallois, S., Heger, T., Henry, A. G., & van Andel, T. (2021). The importance of choosing appropriate methods for assessing wild food plant knowledge and use: A case study among the Baka in Cameroon. PLoS ONE, 16(2), 247108. doi:10.1371/journal.pone.0247108.
Zhang, L., Zhang, Y., Pei, S., Geng, Y., Wang, C., & Yuhua, W. (2015). Ethnobotanical survey of medicinal dietary plants used by the Naxi People in Lijiang Area, Northwest Yunnan, China. Journal of Ethnobiology and Ethnomedicine, 11(1), 40. doi:10.1186/s13002-015-0030-6.
DOI: 10.28991/HEF-2025-06-01-09
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Yelena Pozdnyakova, Aigul Murzatayeva, Gulnara Omarova