A Comparison of Machine Learning Approaches for Prediction of Permeability using Well Log Data in the Hydrocarbon Reservoirs
Abstract
Doi: 10.28991/HEF-2021-02-02-01
Full Text: PDF
Keywords
References
Aminian, K., Ameri, S., Oyerokun, A., & Thomas, B. (2003). Prediction of flow units and permeability using artificial neural networks. SPE Western Regional/AAPG Pacific Section Joint Meeting, 299–305. doi:10.2118/83586-ms.
Bagheripour, P. (2014). Committee neural network model for rock permeability prediction. Journal of Applied Geophysics, 104, 142–148. doi:10.1016/j.jappgeo.2014.03.001.
Lim, J. S. (2005). Reservoir properties determination using fuzzy logic and neural networks from well data in offshore Korea. Journal of Petroleum Science and Engineering, 49(3–4), 182–192. doi:10.1016/j.petrol.2005.05.005.
Alnuaimi, M. M. (2018). Using Artificial Intelligence and Machine Learning to Develop Synthetic Well Logs Develop Synthetic Well Logs, West Virginia University, West Virginia, United States.
Ertekin, T., & Sun, Q. (2019). Use of Artificial Intelligence in Determining the Location of Infill Wells in Hydrocarbon Exploration and Production Activities. In Advances in Petroleum Engineering and Petroleum Geochemistry (pp. 3–5). Springer. doi:10.1007/978-3-030-01578-7_1.
Fajana, A. O., Ayuk, M. A., & Enikanselu, P. A. (2019). Application of multilayer perceptron neural network and seismic multiattribute transforms in reservoir characterization of Pennay field, Niger Delta. Journal of Petroleum Exploration and Production Technology, 9(1), 31–49. doi:10.1007/s13202-018-0485-9.
Ghaffarkhah, A., Afrand, M., Talebkeikhah, M., Sehat, A. A., Moraveji, M. K., Talebkeikhah, F., & Arjmand, M. (2020). On evaluation of thermophysical properties of transformer oil-based nanofluids: A comprehensive modeling and experimental study. Journal of Molecular Liquids, 300, 112249. doi:10.1016/j.molliq.2019.112249.
Khamis, M. A., & Fattah, K. A. (2019). Estimating oil–gas ratio for volatile oil and gas condensate reservoirs: artificial neural network, support vector machines and functional network approach. Journal of Petroleum Exploration and Production Technology, 9(1), 573–582. doi:10.1007/s13202-018-0501-0.
Moussa, T., Elkatatny, S., Mahmoud, M., & Abdulraheem, A. (2018). Development of New Permeability Formulation from Well Log Data Using Artificial Intelligence Approaches. Journal of Energy Resources Technology, Transactions of the ASME, 140(7). doi:10.1115/1.4039270.
Sabah, M., Talebkeikhah, M., Agin, F., Talebkeikhah, F., & Hasheminasab, E. (2019). Application of decision tree, artificial neural networks, and adaptive neuro-fuzzy inference system on predicting lost circulation: A case study from Marun oil field. Journal of Petroleum Science and Engineering, 177, 236–249. doi:10.1016/j.petrol.2019.02.045.
Salgado, W. L., Dam, R. S. de F., Teixeira, T. P., Conti, C. C., & Salgado, C. M. (2020). Application of artificial intelligence in scale thickness prediction on offshore petroleum using a gamma-ray densitometer. Radiation Physics and Chemistry, 168, 108549. doi:10.1016/j.radphyschem.2019.108549.
Sadeghtabaghi, Z., Talebkeikhah, M., & Rabbani, A. R. (2020). Prediction of vitrinite reflectance values using machine learning techniques: a new approach. Journal of Petroleum Exploration and Production Technology, 11(2), 651–671. doi:10.1007/s13202-020-01043-8.
Bhatt, A., & Helle, H. B. (2002). Committee neural networks for porosity and permeability prediction from well logs. Geophysical Prospecting, 50(6), 645–660. doi:10.1046/j.1365-2478.2002.00346.x.
Elkatatny, S., Mahmoud, M., Tariq, Z., & Abdulraheem, A. (2018). New insights into the prediction of heterogeneous carbonate reservoir permeability from well logs using artificial intelligence network. Neural Computing and Applications, 30(9), 2673–2683. doi:10.1007/s00521-017-2850-x.
Helle, H. B., Bhatt, A., & Ursin, B. (2001). Porosity and permeability prediction from wireline logs using artificial neural networks: A North Sea case study. Geophysical Prospecting, 49(4), 431–444. doi:10.1046/j.1365-2478.2001.00271.x.
Zhong, Z., Carr, T. R., Wu, X., & Wang, G. (2019). Application of a convolutional neural network in permeability prediction: A case study in the Jacksonburg-Stringtown oil field, West Virginia, USA. Geophysics, 84(6), B363–B373. doi:10.1190/geo2018-0588.1.
Chen, C. H., & Lin, Z. S. (2006). A committee machine with empirical formulas for permeability prediction. Computers and Geosciences, 32(4), 485–496. doi:10.1016/j.cageo.2005.08.003.
Karimpouli, S., Fathianpour, N., & Roohi, J. (2010). A new approach to improve neural networks’ algorithm in permeability prediction of petroleum reservoirs using supervised committee machine neural network (SCMNN). Journal of Petroleum Science and Engineering, 73(3–4), 227–232. doi:10.1016/j.petrol.2010.07.003.
Gholami, R., Moradzadeh, A., Maleki, S., Amiri, S., & Hanachi, J. (2014). Applications of artificial intelligence methods in prediction of permeability in hydrocarbon reservoirs. Journal of Petroleum Science and Engineering, 122, 643–656. doi:10.1016/j.petrol.2014.09.007.
Shokooh Saljooghi, B., & Hezarkhani, A. (2015). A new approach to improve permeability prediction of petroleum reservoirs using neural network adaptive wavelet (wavenet). Journal of Petroleum Science and Engineering, 133, 851–861. doi:10.1016/j.petrol.2015.04.002.
Jamshidian, M., Hadian, M., Zadeh, M. M., Kazempoor, Z., Bazargan, P., & Salehi, H. (2015). Prediction of free flowing porosity and permeability based on conventional well logging data using artificial neural networks optimized by Imperialist competitive algorithm - A case study in the South Pars gas field. Journal of Natural Gas Science and Engineering, 24, 89–98. doi:10.1016/j.jngse.2015.02.026.
Handhal, A. M. (2016). Prediction of reservoir permeability from porosity measurements for the upper sandstone member of Zubair Formation in Super-Giant South Rumila oil field, southern Iraq, using M5P decision tress and adaptive neuro-fuzzy inference system (ANFIS): a comparative study. Modeling Earth Systems and Environment, 2(3), 111. doi:10.1007/s40808-016-0179-6.
Rafik, B., & Kamel, B. (2017). Prediction of permeability and porosity from well log data using the nonparametric regression with multivariate analysis and neural network, Hassi R’Mel Field, Algeria. Egyptian Journal of Petroleum, 26(3), 763–778. doi:10.1016/j.ejpe.2016.10.013.
Al-Amri, M., Mahmoud, M., Elkatatny, S., Al-Yousef, H., & Al-Ghamdi, T. (2017). Integrated petrophysical and reservoir characterization workflow to enhance permeability and water saturation prediction. Journal of African Earth Sciences, 131, 105–116. doi:10.1016/j.jafrearsci.2017.04.014.
Zhao, T., Zhao, H., Ning, Z., Li, X., & Wang, Q. (2018). Permeability prediction of numerical reconstructed multiscale tight porous media using the representative elementary volume scale lattice Boltzmann method. International Journal of Heat and Mass Transfer, 118, 368–377. doi:10.1016/j.ijheatmasstransfer.2017.11.004.
Wood, D. A. (2020). Predicting porosity, permeability and water saturation applying an optimized nearest-neighbour, machine-learning and data-mining network of well-log data. Journal of Petroleum Science and Engineering, 184, 106587. doi:10.1016/j.petrol.2019.106587.
Jooybari, A., & Rezaie, P. (2017). Petrophysical Evaluation of the Sarvak Formation Based on Well Logs in Dezful Embayment, Zagros Fold Zone, South West of Iran. Engineering, Technology & Applied Science Research, 7(1), 1358–1362. doi:10.48084/etasr.982.
Nabikhani, N., Mahboubi, A., Kadkhodaie, A., & Yosefpour, M. R. (2012). The Evaluation of Reservoir Quality of Sarvak Formation in One of Oil Fields of the Persian Gulf. Journal of Petroleum Science and Technology, 2(1), 2012.
Poursamad, R., & Tabatabaei, H. (2017). Reservoir Quality Evaluation of Sarvak Formation in Gachsaran Oil Field, SW of Iran (Issue June). SW of Iran.
Beydoun, Z. R. (1988). The Middle East: regional geology and petroleum resources. In The Middle East: regional geology and petroleum resources. doi:10.2307/635079.
Alizadeh, B., Saadati, H., Rashidi, M., & Kobraei, M. (2016). Geochemical investigation of oils from Cretaceous to Eocene sedimentary sequences of the Abadan Plain, Southwest Iran. Marine and Petroleum Geology, 73, 609–619. doi:10.1016/j.marpetgeo.2015.11.002.
Saadatinejad, M. R., & Sarkarinejad, K. (2011). Application of the spectral decomposition technique for characterizing reservoir extensional system in the Abadan Plain, southwestern Iran. Marine and Petroleum Geology, 28(6), 1205–1217. doi:10.1016/j.marpetgeo.2011.02.002.
Assadi, A., Honarmand, J., Moallemi, S. A., & Abdollahie-Fard, I. (2016). Depositional environments and sequence stratigraphy of the Sarvak Formation in an oil field in the Abadan Plain, SW Iran. Facies, 62(4), 26. doi:10.1007/s10347-016-0477-5.
Saadatmand, M. R., Moradi, A., & Hashemi, H. (2013). Passive seismic survey on the Darquain oil field. Quarterly Journal of Tethys, 1(3), 215–224.
Rajabi, M., Sherkati, S., Bohloli, B., & Tingay, M. (2010). Subsurface fracture analysis and determination of in-situ stress direction using FMI logs: An example from the Santonian carbonates (Ilam Formation) in the Abadan Plain, Iran. Tectonophysics, 492(1–4), 192–200. doi:10.1016/j.tecto.2010.06.014.
G. A. James (2), J. G. Wynd (3). (1965). Stratigraphic Nomenclature of Iranian Oil Consortium Agreement Area. AAPG Bulletin, 49(12), 2182–2245. doi:10.1306/a663388a-16c0-11d7-8645000102c1865d.
Assadi, A., Honarmand, J., Moallemi, S. A., & Abdollahie-Fard, I. (2018). An integrated approach for identification and characterization of palaeo-exposure surfaces in the upper Sarvak Formation of Abadan Plain, SW Iran. Journal of African Earth Sciences, 145, 32–48. doi:10.1016/j.jafrearsci.2018.05.002.
Rezaie, P., Jooybari, A., Pour, M. M., & Gorbani, M. (2016). Factor Controlling Reservoir Properties and Flow Unit Determination in the Ilam Formation of Dezfol Embayment at Zagros Fold-Thrust Belt, Southwest of Iran. Open Journal of Geology, 06(07), 660–671. doi:10.4236/ojg.2016.67051.
Esrafili-Dizaji, B., Rahimpour-Bonab, H., Mehrabi, H., Afshin, S., Kiani Harchegani, F., & Shahverdi, N. (2015). Characterization of rudist-dominated units as potential reservoirs in the middle Cretaceous Sarvak Formation, SW Iran. Facies, 61(3), 14. doi:10.1007/s10347-015-0442-8.
Kosari, E., Kadkhodaie, A., Bahroudi, A., Chehrazi, A., & Talebian, M. (2017). An integrated approach to study the impact of fractures distribution on the Ilam-Sarvak carbonate reservoirs: A case study from the Strait of Hormuz, the Persian Gulf. Journal of Petroleum Science and Engineering, 152, 104–115. doi:10.1016/j.petrol.2017.03.001.
Nasseri, A., Mohammadzadeh, M. J., & Hashemtabatabaee, S. (2016). Evaluating Bangestan reservoirs and targeting productive zones in Dezful embayment of Iran. Journal of Geophysics and Engineering, 13(6), 994–1001. doi:10.1088/1742-2132/13/6/994.
Deosarkar, M. P., & Sathe, V. S. (2012). Predicting effective viscosity of magnetite ore slurries by using artificial neural network. Powder Technology, 219, 264–270. doi:10.1016/j.powtec.2011.12.058.
Azimi Dijvejin, Z., Ghaffarkhah, A., Vafaie Sefti, M., & Moraveji, M. K. (2019). Synthesis, structure and mechanical properties of nanocomposites based on exfoliated nano magnesium silicate crystal and poly(acrylamide). Journal of Dispersion Science and Technology, 40(2), 276–286. doi:10.1080/01932691.2018.1467777.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning. Springer Texts in Statistics. doi:10.1007/978-1-4614-7138-7.
Pacławski, A., Szlęk, J., Lau, R., Jachowicz, R., & Mendyk, A. (2015). Empirical modeling of the fine particle fraction for carrier-based pulmonary delivery formulations. International Journal of Nanomedicine, 10, 801–810. doi:10.2147/IJN.S75758.
Maučec, M., Singh, A. P., Bhattacharya, S., Yarus, J. M., Fulton, D. D., & Orth, J. M. (2015). Multivariate analysis and data mining of well-stimulation data by use of classification-and-regression tree with enhanced interpretation and prediction capabilities. SPE Economics and Management, 7(2), 60–71. doi:10.2118/166472-PA.
Singh, A. (2017). Application of data mining for quick root-cause identification and automated production diagnostic of gas wells with plunger lift. SPE Production and Operations, 32(3), 279–293. doi:10.2118/175564-pa.
Singh, A. (2015). Root-cause identification and production diagnostic for gas wells with plunger lift. In Society of Petroleum Engineers - SPE Reservoir Characterisation and Simulation Conference and Exhibition, RCSC, 1042–1064. doi:10.2118/175564-ms.
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (2017). Classification and Regression Trees. Routledge. doi:10.1201/9781315139470.
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. doi:10.1023/A:1010933404324.
Eskandarian, S., Bahrami, P., & Kazemi, P. (2017). A comprehensive data mining approach to estimate the rate of penetration: Application of neural network, rule based models and feature ranking. Journal of Petroleum Science and Engineering, 156, 605–615. doi:10.1016/j.petrol.2017.06.039.
Hegde, C., Wallace, S., & Gray, K. (2015). Using trees, bagging, and random forests to predict rate of penetration during drilling. Society of Petroleum Engineers - SPE Middle East Intelligent Oil and Gas Conference and Exhibition. doi:10.2118/176792-ms.
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees (chapman y hall, eds.). Monterey, CA, EE. UU: Wadsworth International Group.
Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. R News, 2(3), 18–22.
Ahmad, M. W., Mourshed, M., & Rezgui, Y. (2017). Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption. Energy and Buildings, 147, 77–89. doi:10.1016/j.enbuild.2017.04.038.
Okpo, E. E., Dosunmu, A., & Odagme, B. S. (2016). Artificial neural network model for predicting wellbore instability. Society of Petroleum Engineers - SPE Nigeria Annual International Conference and Exhibition. doi:10.2118/184371-ms.
Al-Naser, M., Elshafei, M., & Al-Sarkhi, A. (2016). Artificial neural network application for multiphase flow patterns detection: A new approach. Journal of Petroleum Science and Engineering, 145, 548–564. doi:10.1016/j.petrol.2016.06.029.
Khoshjavan, S., Heidary, M., & Rezai, B. (2010). Estimation of coal swelling index based on chemical properties of coal using artificial neural networks. Iranian Journal of Materials Science and Engineering, 7(3), 1–11.
Gardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences. Atmospheric Environment, 32(14–15), 2627–2636. doi:10.1016/S1352-2310(97)00447-0.
Moghadassi, A., Parvizian, F., & Hosseini, S. M. (2009). A new approach based on artificial neural networks for prediction of high pressure vapor-liquid equilibrium. Australian Journal of Basic and Applied Sciences, 3(3), 1851–1862.
Hemmati-Sarapardeh, A., Ghazanfari, M. H., Ayatollahi, S., & Masihi, M. (2016). Accurate determination of the CO2-crude oil minimum miscibility pressure of pure and impure CO2 streams: A robust modelling approach. Canadian Journal of Chemical Engineering, 94(2), 253–261. doi:10.1002/cjce.22387.
Lashkarbolooki, M., Hezave, A. Z., & Ayatollahi, S. (2012). Artificial neural network as an applicable tool to predict the binary heat capacity of mixtures containing ionic liquids. Fluid Phase Equilibria, 324, 102–107. doi:10.1016/j.fluid.2012.03.015.
Yilmaz, I., & Kaynar, O. (2011). Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert Systems with Applications, 38(5), 5958–5966. doi:10.1016/j.eswa.2010.11.027.
Hemmat Esfe, M., Saedodin, S., Sina, N., Afrand, M., & Rostami, S. (2015). Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid. International Communications in Heat and Mass Transfer, 68, 50–57. doi:10.1016/j.icheatmasstransfer.2015.06.013.
Huang, S. C., & Do, B. H. (2014). Radial basis function based neural network for motion detection in dynamic scenes. IEEE Transactions on Cybernetics, 44(1), 114–125. doi:10.1109/TCYB.2013.2248057.
Venkatesan, P., & Anitha, S. (2006). Application of a radial basis function neural network for diagnosis of diabetes mellitus. Current Science, 91(9), 1195–1199.
Hemmati-Sarapardeh, A., Varamesh, A., Husein, M. M., & Karan, K. (2018). On the evaluation of the viscosity of nanofluid systems: Modeling and data assessment. Renewable and Sustainable Energy Reviews, 81, 313–329. doi:10.1016/j.rser.2017.07.049.
Panda, S. S., Chakraborty, D., & Pal, S. K. (2008). Flank wear prediction in drilling using back propagation neural network and radial basis function network. Applied Soft Computing Journal, 8(2), 858–871. doi:10.1016/j.asoc.2007.07.003.
Nasiri, A., Ghaffarkhah, A., Keshavarz Moraveji, M., Gharbanian, A., & Valizadeh, M. (2017). Experimental and field test analysis of different loss control materials for combating lost circulation in bentonite mud. Journal of Natural Gas Science and Engineering, 44, 1–8. doi:10.1016/j.jngse.2017.04.004.
Hemmati-Sarapardeh, A., Khishvand, M., Naseri, A., & Mohammadi, A. H. (2013). Toward reservoir oil viscosity correlation. Chemical Engineering Science, 90, 53–68. doi:10.1016/j.ces.2012.12.009.
Altunbay, M., Georgi, D., & Takezaki, H. M. (1997). Permeability prediction for carbonates: still a challenge? In Proceedings of the Middle East Oil Show, Vol. 1, 609–620. doi:10.2523/37753-ms.
Amaefule, J. O., Altunbay, M., Tiab, D., Kersey, D. G., & Keelan, D. K. (1993). Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/ wells. In Proceedings - SPE Annual Technical Conference and Exhibition: Vol. Omega, 205–220. doi:10.2523/26436-ms.
Babadagli, T., & Al-Salmi, S. (2002). Improvement of Permeability Prediction for Carbonate Reservoirs Using Well Log Data. In SPE - Asia Pacific Oil and Gas Conference, 555–571. doi:10.2118/77889-ms.
Carman, P. G. (1997). Fluid flow through granular beds. Chemical Engineering Research and Design, 75(1 SUPPL.), 32– 48. doi:10.1016/s0263-8762(97)80003-2.
Ohen, H. A., Ajufo, A., & Curby, F. M. (1995). Hydraulic (flow) unit based model for the determination of petrophysical properties from NMR relaxation measurements. In Proceedings - SPE Annual Technical Conference and Exhibition: Vol. Omega, 983–996. doi:10.2523/30626-ms.
Shabani, M., Sadeghtabaghi, Z., & Khoshsiar, Z. (2020). Petrophysical Evaluation of Bangestan Group Formations in an Iranian Oil Field. Journal of Oil, Gas and Petrochemical Technology, 7(1), 30-42.
Hemmat Esfe, M., Wongwises, S., Naderi, A., Asadi, A., Safaei, M. R., Rostamian, H., Dahari, M., & Karimipour, A. (2015). Thermal conductivity of Cu/TiO2-water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation. International Communications in Heat and Mass Transfer, 66, 100–104. doi:10.1016/j.icheatmasstransfer.2015.05.014.
Vapnik, V. (2013). The nature of statistical learning theory: Springer Science & Business Media, Berlin, Germany.
DOI: 10.28991/HEF-2021-02-02-01
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Mohsen Talebkeikhah, Zahra Sadeghtabaghi, Mehdi Shabani