A Comparison of Machine Learning Approaches for Prediction of Permeability using Well Log Data in the Hydrocarbon Reservoirs

Mohsen Talebkeikhah, Zahra Sadeghtabaghi, Mehdi Shabani

Abstract


Permeability is a vital parameter in reservoir engineering that affects production directly. Since this parameter's significance is obvious, finding a way to an accurate determination of permeability is essential as well. In this paper, the permeability of two notable carbonate reservoirs (Ilam and Sarvak) in the southwest of Iran was predicted by several different methods, and the level of accuracy in all models was compared. For this purpose, Multi-Layer Perceptron Neural Network (MLP), Radial Basis Function Neural Network (RBF), Support Vector Regression (SVR), decision tree (DT), and random forest (RF) methods were chosen. The full set of real well-logging data was investigated by random forest, and five of them were selected as the potent variables. At depth, computed gamma-ray log (CGR), spectral gamma-ray log (SGR), neutron porosity log (NPHI), and density log (RHOB) were considered efficacious variables and used as input data, while permeability was considered output. It should be noted that permeability values are derived from core analysis. Statistical parameters like the coefficient of determination (R2), root mean square error (RMSE), and standard deviation (SD) were determined for the train, test, and total sets. Based on statistical and graphical results, the SVM and DT models perform more accurately than others. RMSE, SD and R2values of SVM and DT models are 0.38, 1.63, 0.97 and 0.44, 2.89, and 0.96 respectively. The results of the best-proposed models in this paper were then compared with the outcome of the empirical equation for permeability prediction. The comparison indicates that artificial intelligence methods perform more accurately than traditional methods for permeability estimation, such as proposed equations.

 

Doi: 10.28991/HEF-2021-02-02-01

Full Text: PDF


Keywords


Permeability; Well Logging; Machine Learning; Data Mining; Ilam Formation; Sarvak Formation.

References


Aminian, K., Ameri, S., Oyerokun, A., & Thomas, B. (2003). Prediction of flow units and permeability using artificial neural networks. SPE Western Regional/AAPG Pacific Section Joint Meeting, 299–305. doi:10.2118/83586-ms.

Bagheripour, P. (2014). Committee neural network model for rock permeability prediction. Journal of Applied Geophysics, 104, 142–148. doi:10.1016/j.jappgeo.2014.03.001.

Lim, J. S. (2005). Reservoir properties determination using fuzzy logic and neural networks from well data in offshore Korea. Journal of Petroleum Science and Engineering, 49(3–4), 182–192. doi:10.1016/j.petrol.2005.05.005.

Alnuaimi, M. M. (2018). Using Artificial Intelligence and Machine Learning to Develop Synthetic Well Logs Develop Synthetic Well Logs, West Virginia University, West Virginia, United States.

Ertekin, T., & Sun, Q. (2019). Use of Artificial Intelligence in Determining the Location of Infill Wells in Hydrocarbon Exploration and Production Activities. In Advances in Petroleum Engineering and Petroleum Geochemistry (pp. 3–5). Springer. doi:10.1007/978-3-030-01578-7_1.

Fajana, A. O., Ayuk, M. A., & Enikanselu, P. A. (2019). Application of multilayer perceptron neural network and seismic multiattribute transforms in reservoir characterization of Pennay field, Niger Delta. Journal of Petroleum Exploration and Production Technology, 9(1), 31–49. doi:10.1007/s13202-018-0485-9.

Ghaffarkhah, A., Afrand, M., Talebkeikhah, M., Sehat, A. A., Moraveji, M. K., Talebkeikhah, F., & Arjmand, M. (2020). On evaluation of thermophysical properties of transformer oil-based nanofluids: A comprehensive modeling and experimental study. Journal of Molecular Liquids, 300, 112249. doi:10.1016/j.molliq.2019.112249.

Khamis, M. A., & Fattah, K. A. (2019). Estimating oil–gas ratio for volatile oil and gas condensate reservoirs: artificial neural network, support vector machines and functional network approach. Journal of Petroleum Exploration and Production Technology, 9(1), 573–582. doi:10.1007/s13202-018-0501-0.

Moussa, T., Elkatatny, S., Mahmoud, M., & Abdulraheem, A. (2018). Development of New Permeability Formulation from Well Log Data Using Artificial Intelligence Approaches. Journal of Energy Resources Technology, Transactions of the ASME, 140(7). doi:10.1115/1.4039270.

Sabah, M., Talebkeikhah, M., Agin, F., Talebkeikhah, F., & Hasheminasab, E. (2019). Application of decision tree, artificial neural networks, and adaptive neuro-fuzzy inference system on predicting lost circulation: A case study from Marun oil field. Journal of Petroleum Science and Engineering, 177, 236–249. doi:10.1016/j.petrol.2019.02.045.

Salgado, W. L., Dam, R. S. de F., Teixeira, T. P., Conti, C. C., & Salgado, C. M. (2020). Application of artificial intelligence in scale thickness prediction on offshore petroleum using a gamma-ray densitometer. Radiation Physics and Chemistry, 168, 108549. doi:10.1016/j.radphyschem.2019.108549.

Sadeghtabaghi, Z., Talebkeikhah, M., & Rabbani, A. R. (2020). Prediction of vitrinite reflectance values using machine learning techniques: a new approach. Journal of Petroleum Exploration and Production Technology, 11(2), 651–671. doi:10.1007/s13202-020-01043-8.

Bhatt, A., & Helle, H. B. (2002). Committee neural networks for porosity and permeability prediction from well logs. Geophysical Prospecting, 50(6), 645–660. doi:10.1046/j.1365-2478.2002.00346.x.

Elkatatny, S., Mahmoud, M., Tariq, Z., & Abdulraheem, A. (2018). New insights into the prediction of heterogeneous carbonate reservoir permeability from well logs using artificial intelligence network. Neural Computing and Applications, 30(9), 2673–2683. doi:10.1007/s00521-017-2850-x.

Helle, H. B., Bhatt, A., & Ursin, B. (2001). Porosity and permeability prediction from wireline logs using artificial neural networks: A North Sea case study. Geophysical Prospecting, 49(4), 431–444. doi:10.1046/j.1365-2478.2001.00271.x.

Zhong, Z., Carr, T. R., Wu, X., & Wang, G. (2019). Application of a convolutional neural network in permeability prediction: A case study in the Jacksonburg-Stringtown oil field, West Virginia, USA. Geophysics, 84(6), B363–B373. doi:10.1190/geo2018-0588.1.

Chen, C. H., & Lin, Z. S. (2006). A committee machine with empirical formulas for permeability prediction. Computers and Geosciences, 32(4), 485–496. doi:10.1016/j.cageo.2005.08.003.

Karimpouli, S., Fathianpour, N., & Roohi, J. (2010). A new approach to improve neural networks’ algorithm in permeability prediction of petroleum reservoirs using supervised committee machine neural network (SCMNN). Journal of Petroleum Science and Engineering, 73(3–4), 227–232. doi:10.1016/j.petrol.2010.07.003.

Gholami, R., Moradzadeh, A., Maleki, S., Amiri, S., & Hanachi, J. (2014). Applications of artificial intelligence methods in prediction of permeability in hydrocarbon reservoirs. Journal of Petroleum Science and Engineering, 122, 643–656. doi:10.1016/j.petrol.2014.09.007.

Shokooh Saljooghi, B., & Hezarkhani, A. (2015). A new approach to improve permeability prediction of petroleum reservoirs using neural network adaptive wavelet (wavenet). Journal of Petroleum Science and Engineering, 133, 851–861. doi:10.1016/j.petrol.2015.04.002.

Jamshidian, M., Hadian, M., Zadeh, M. M., Kazempoor, Z., Bazargan, P., & Salehi, H. (2015). Prediction of free flowing porosity and permeability based on conventional well logging data using artificial neural networks optimized by Imperialist competitive algorithm - A case study in the South Pars gas field. Journal of Natural Gas Science and Engineering, 24, 89–98. doi:10.1016/j.jngse.2015.02.026.

Handhal, A. M. (2016). Prediction of reservoir permeability from porosity measurements for the upper sandstone member of Zubair Formation in Super-Giant South Rumila oil field, southern Iraq, using M5P decision tress and adaptive neuro-fuzzy inference system (ANFIS): a comparative study. Modeling Earth Systems and Environment, 2(3), 111. doi:10.1007/s40808-016-0179-6.

Rafik, B., & Kamel, B. (2017). Prediction of permeability and porosity from well log data using the nonparametric regression with multivariate analysis and neural network, Hassi R’Mel Field, Algeria. Egyptian Journal of Petroleum, 26(3), 763–778. doi:10.1016/j.ejpe.2016.10.013.

Al-Amri, M., Mahmoud, M., Elkatatny, S., Al-Yousef, H., & Al-Ghamdi, T. (2017). Integrated petrophysical and reservoir characterization workflow to enhance permeability and water saturation prediction. Journal of African Earth Sciences, 131, 105–116. doi:10.1016/j.jafrearsci.2017.04.014.

Zhao, T., Zhao, H., Ning, Z., Li, X., & Wang, Q. (2018). Permeability prediction of numerical reconstructed multiscale tight porous media using the representative elementary volume scale lattice Boltzmann method. International Journal of Heat and Mass Transfer, 118, 368–377. doi:10.1016/j.ijheatmasstransfer.2017.11.004.

Wood, D. A. (2020). Predicting porosity, permeability and water saturation applying an optimized nearest-neighbour, machine-learning and data-mining network of well-log data. Journal of Petroleum Science and Engineering, 184, 106587. doi:10.1016/j.petrol.2019.106587.

Jooybari, A., & Rezaie, P. (2017). Petrophysical Evaluation of the Sarvak Formation Based on Well Logs in Dezful Embayment, Zagros Fold Zone, South West of Iran. Engineering, Technology & Applied Science Research, 7(1), 1358–1362. doi:10.48084/etasr.982.

Nabikhani, N., Mahboubi, A., Kadkhodaie, A., & Yosefpour, M. R. (2012). The Evaluation of Reservoir Quality of Sarvak Formation in One of Oil Fields of the Persian Gulf. Journal of Petroleum Science and Technology, 2(1), 2012.

Poursamad, R., & Tabatabaei, H. (2017). Reservoir Quality Evaluation of Sarvak Formation in Gachsaran Oil Field, SW of Iran (Issue June). SW of Iran.

Beydoun, Z. R. (1988). The Middle East: regional geology and petroleum resources. In The Middle East: regional geology and petroleum resources. doi:10.2307/635079.

Alizadeh, B., Saadati, H., Rashidi, M., & Kobraei, M. (2016). Geochemical investigation of oils from Cretaceous to Eocene sedimentary sequences of the Abadan Plain, Southwest Iran. Marine and Petroleum Geology, 73, 609–619. doi:10.1016/j.marpetgeo.2015.11.002.

Saadatinejad, M. R., & Sarkarinejad, K. (2011). Application of the spectral decomposition technique for characterizing reservoir extensional system in the Abadan Plain, southwestern Iran. Marine and Petroleum Geology, 28(6), 1205–1217. doi:10.1016/j.marpetgeo.2011.02.002.

Assadi, A., Honarmand, J., Moallemi, S. A., & Abdollahie-Fard, I. (2016). Depositional environments and sequence stratigraphy of the Sarvak Formation in an oil field in the Abadan Plain, SW Iran. Facies, 62(4), 26. doi:10.1007/s10347-016-0477-5.

Saadatmand, M. R., Moradi, A., & Hashemi, H. (2013). Passive seismic survey on the Darquain oil field. Quarterly Journal of Tethys, 1(3), 215–224.

Rajabi, M., Sherkati, S., Bohloli, B., & Tingay, M. (2010). Subsurface fracture analysis and determination of in-situ stress direction using FMI logs: An example from the Santonian carbonates (Ilam Formation) in the Abadan Plain, Iran. Tectonophysics, 492(1–4), 192–200. doi:10.1016/j.tecto.2010.06.014.

G. A. James (2), J. G. Wynd (3). (1965). Stratigraphic Nomenclature of Iranian Oil Consortium Agreement Area. AAPG Bulletin, 49(12), 2182–2245. doi:10.1306/a663388a-16c0-11d7-8645000102c1865d.

Assadi, A., Honarmand, J., Moallemi, S. A., & Abdollahie-Fard, I. (2018). An integrated approach for identification and characterization of palaeo-exposure surfaces in the upper Sarvak Formation of Abadan Plain, SW Iran. Journal of African Earth Sciences, 145, 32–48. doi:10.1016/j.jafrearsci.2018.05.002.

Rezaie, P., Jooybari, A., Pour, M. M., & Gorbani, M. (2016). Factor Controlling Reservoir Properties and Flow Unit Determination in the Ilam Formation of Dezfol Embayment at Zagros Fold-Thrust Belt, Southwest of Iran. Open Journal of Geology, 06(07), 660–671. doi:10.4236/ojg.2016.67051.

Esrafili-Dizaji, B., Rahimpour-Bonab, H., Mehrabi, H., Afshin, S., Kiani Harchegani, F., & Shahverdi, N. (2015). Characterization of rudist-dominated units as potential reservoirs in the middle Cretaceous Sarvak Formation, SW Iran. Facies, 61(3), 14. doi:10.1007/s10347-015-0442-8.

Kosari, E., Kadkhodaie, A., Bahroudi, A., Chehrazi, A., & Talebian, M. (2017). An integrated approach to study the impact of fractures distribution on the Ilam-Sarvak carbonate reservoirs: A case study from the Strait of Hormuz, the Persian Gulf. Journal of Petroleum Science and Engineering, 152, 104–115. doi:10.1016/j.petrol.2017.03.001.

Nasseri, A., Mohammadzadeh, M. J., & Hashemtabatabaee, S. (2016). Evaluating Bangestan reservoirs and targeting productive zones in Dezful embayment of Iran. Journal of Geophysics and Engineering, 13(6), 994–1001. doi:10.1088/1742-2132/13/6/994.

Deosarkar, M. P., & Sathe, V. S. (2012). Predicting effective viscosity of magnetite ore slurries by using artificial neural network. Powder Technology, 219, 264–270. doi:10.1016/j.powtec.2011.12.058.

Azimi Dijvejin, Z., Ghaffarkhah, A., Vafaie Sefti, M., & Moraveji, M. K. (2019). Synthesis, structure and mechanical properties of nanocomposites based on exfoliated nano magnesium silicate crystal and poly(acrylamide). Journal of Dispersion Science and Technology, 40(2), 276–286. doi:10.1080/01932691.2018.1467777.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning. Springer Texts in Statistics. doi:10.1007/978-1-4614-7138-7.

Pacławski, A., Szlęk, J., Lau, R., Jachowicz, R., & Mendyk, A. (2015). Empirical modeling of the fine particle fraction for carrier-based pulmonary delivery formulations. International Journal of Nanomedicine, 10, 801–810. doi:10.2147/IJN.S75758.

Maučec, M., Singh, A. P., Bhattacharya, S., Yarus, J. M., Fulton, D. D., & Orth, J. M. (2015). Multivariate analysis and data mining of well-stimulation data by use of classification-and-regression tree with enhanced interpretation and prediction capabilities. SPE Economics and Management, 7(2), 60–71. doi:10.2118/166472-PA.

Singh, A. (2017). Application of data mining for quick root-cause identification and automated production diagnostic of gas wells with plunger lift. SPE Production and Operations, 32(3), 279–293. doi:10.2118/175564-pa.

Singh, A. (2015). Root-cause identification and production diagnostic for gas wells with plunger lift. In Society of Petroleum Engineers - SPE Reservoir Characterisation and Simulation Conference and Exhibition, RCSC, 1042–1064. doi:10.2118/175564-ms.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (2017). Classification and Regression Trees. Routledge. doi:10.1201/9781315139470.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. doi:10.1023/A:1010933404324.

Eskandarian, S., Bahrami, P., & Kazemi, P. (2017). A comprehensive data mining approach to estimate the rate of penetration: Application of neural network, rule based models and feature ranking. Journal of Petroleum Science and Engineering, 156, 605–615. doi:10.1016/j.petrol.2017.06.039.

Hegde, C., Wallace, S., & Gray, K. (2015). Using trees, bagging, and random forests to predict rate of penetration during drilling. Society of Petroleum Engineers - SPE Middle East Intelligent Oil and Gas Conference and Exhibition. doi:10.2118/176792-ms.

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees (chapman y hall, eds.). Monterey, CA, EE. UU: Wadsworth International Group.

Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. R News, 2(3), 18–22.

Ahmad, M. W., Mourshed, M., & Rezgui, Y. (2017). Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption. Energy and Buildings, 147, 77–89. doi:10.1016/j.enbuild.2017.04.038.

Okpo, E. E., Dosunmu, A., & Odagme, B. S. (2016). Artificial neural network model for predicting wellbore instability. Society of Petroleum Engineers - SPE Nigeria Annual International Conference and Exhibition. doi:10.2118/184371-ms.

Al-Naser, M., Elshafei, M., & Al-Sarkhi, A. (2016). Artificial neural network application for multiphase flow patterns detection: A new approach. Journal of Petroleum Science and Engineering, 145, 548–564. doi:10.1016/j.petrol.2016.06.029.

Khoshjavan, S., Heidary, M., & Rezai, B. (2010). Estimation of coal swelling index based on chemical properties of coal using artificial neural networks. Iranian Journal of Materials Science and Engineering, 7(3), 1–11.

Gardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences. Atmospheric Environment, 32(14–15), 2627–2636. doi:10.1016/S1352-2310(97)00447-0.

Moghadassi, A., Parvizian, F., & Hosseini, S. M. (2009). A new approach based on artificial neural networks for prediction of high pressure vapor-liquid equilibrium. Australian Journal of Basic and Applied Sciences, 3(3), 1851–1862.

Hemmati-Sarapardeh, A., Ghazanfari, M. H., Ayatollahi, S., & Masihi, M. (2016). Accurate determination of the CO2-crude oil minimum miscibility pressure of pure and impure CO2 streams: A robust modelling approach. Canadian Journal of Chemical Engineering, 94(2), 253–261. doi:10.1002/cjce.22387.

Lashkarbolooki, M., Hezave, A. Z., & Ayatollahi, S. (2012). Artificial neural network as an applicable tool to predict the binary heat capacity of mixtures containing ionic liquids. Fluid Phase Equilibria, 324, 102–107. doi:10.1016/j.fluid.2012.03.015.

Yilmaz, I., & Kaynar, O. (2011). Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert Systems with Applications, 38(5), 5958–5966. doi:10.1016/j.eswa.2010.11.027.

Hemmat Esfe, M., Saedodin, S., Sina, N., Afrand, M., & Rostami, S. (2015). Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid. International Communications in Heat and Mass Transfer, 68, 50–57. doi:10.1016/j.icheatmasstransfer.2015.06.013.

Huang, S. C., & Do, B. H. (2014). Radial basis function based neural network for motion detection in dynamic scenes. IEEE Transactions on Cybernetics, 44(1), 114–125. doi:10.1109/TCYB.2013.2248057.

Venkatesan, P., & Anitha, S. (2006). Application of a radial basis function neural network for diagnosis of diabetes mellitus. Current Science, 91(9), 1195–1199.

Hemmati-Sarapardeh, A., Varamesh, A., Husein, M. M., & Karan, K. (2018). On the evaluation of the viscosity of nanofluid systems: Modeling and data assessment. Renewable and Sustainable Energy Reviews, 81, 313–329. doi:10.1016/j.rser.2017.07.049.

Panda, S. S., Chakraborty, D., & Pal, S. K. (2008). Flank wear prediction in drilling using back propagation neural network and radial basis function network. Applied Soft Computing Journal, 8(2), 858–871. doi:10.1016/j.asoc.2007.07.003.

Nasiri, A., Ghaffarkhah, A., Keshavarz Moraveji, M., Gharbanian, A., & Valizadeh, M. (2017). Experimental and field test analysis of different loss control materials for combating lost circulation in bentonite mud. Journal of Natural Gas Science and Engineering, 44, 1–8. doi:10.1016/j.jngse.2017.04.004.

Hemmati-Sarapardeh, A., Khishvand, M., Naseri, A., & Mohammadi, A. H. (2013). Toward reservoir oil viscosity correlation. Chemical Engineering Science, 90, 53–68. doi:10.1016/j.ces.2012.12.009.

Altunbay, M., Georgi, D., & Takezaki, H. M. (1997). Permeability prediction for carbonates: still a challenge? In Proceedings of the Middle East Oil Show, Vol. 1, 609–620. doi:10.2523/37753-ms.

Amaefule, J. O., Altunbay, M., Tiab, D., Kersey, D. G., & Keelan, D. K. (1993). Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/ wells. In Proceedings - SPE Annual Technical Conference and Exhibition: Vol. Omega, 205–220. doi:10.2523/26436-ms.

Babadagli, T., & Al-Salmi, S. (2002). Improvement of Permeability Prediction for Carbonate Reservoirs Using Well Log Data. In SPE - Asia Pacific Oil and Gas Conference, 555–571. doi:10.2118/77889-ms.

Carman, P. G. (1997). Fluid flow through granular beds. Chemical Engineering Research and Design, 75(1 SUPPL.), 32– 48. doi:10.1016/s0263-8762(97)80003-2.

Ohen, H. A., Ajufo, A., & Curby, F. M. (1995). Hydraulic (flow) unit based model for the determination of petrophysical properties from NMR relaxation measurements. In Proceedings - SPE Annual Technical Conference and Exhibition: Vol. Omega, 983–996. doi:10.2523/30626-ms.

Shabani, M., Sadeghtabaghi, Z., & Khoshsiar, Z. (2020). Petrophysical Evaluation of Bangestan Group Formations in an Iranian Oil Field. Journal of Oil, Gas and Petrochemical Technology, 7(1), 30-42.

Hemmat Esfe, M., Wongwises, S., Naderi, A., Asadi, A., Safaei, M. R., Rostamian, H., Dahari, M., & Karimipour, A. (2015). Thermal conductivity of Cu/TiO2-water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation. International Communications in Heat and Mass Transfer, 66, 100–104. doi:10.1016/j.icheatmasstransfer.2015.05.014.

Vapnik, V. (2013). The nature of statistical learning theory: Springer Science & Business Media, Berlin, Germany.


Full Text: PDF

DOI: 10.28991/HEF-2021-02-02-01

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Mohsen Talebkeikhah, Zahra Sadeghtabaghi, Mehdi Shabani