Improving Patient Turnaround Time in Malaysian Hospitals with Real-Time IoT BLE Location Tracking

Ganes Raj Muthu Arumugam, Kalaiarasi Sonai Muthu Anbananthen, Saravanan Muthaiyah

Abstract


This study aims to address challenges faced by Malaysian public hospitals in optimizing Patient Turnaround Time (PTAT) by implementing a Real-Time Patient Location Monitoring and Tracking System. Objectives include improving patient tracking to reduce delays and procedural inefficiencies, thus enhancing overall service quality and staff productivity. Methods and analysis involve designing a Proof of Concept (POC) based on Internet of Things (IoT) technology, specifically utilizing Bluetooth Low Energy (BLE) and Received Signal Strength Indicator (RSSI) values to estimate patient proximity to strategically positioned Access Points (APs) within hospital facilities. Through pilot tests, this system allows healthcare providers to monitor and locate patients in real time, facilitating timely service delivery. Findings indicate that the BLE-based location tracking system significantly reduces PTAT, minimizes patient movement delays, and boosts staff efficiency in handling patient flow. Novelty and improvement lie in leveraging BLE’s low-power, cost-effective nature, offering a practical solution for real-time tracking that aligns with the unique operational needs of Malaysian hospitals. This IoT-based approach is a promising development for healthcare settings striving to enhance patient care standards through efficient resource and time management.

 

Doi: 10.28991/HEF-2025-06-01-08

Full Text: PDF


Keywords


BLE; IoT; Patients Turnaround Time (PTAT); Public Hospital.

References


Fan, G., Deng, Z., & Liu, L. C. (2023). Understanding the antecedents of patients’ missed appointments: the perspective of attribution theory. Data Science and Management, 6(4), 247–255. doi:10.1016/j.dsm.2023.09.004.

Su-Lyn, B. (2022). Top 10 Malaysia Health Issues In 2022. CodeBlue, Kuala Lumpur, Malaysia. Available Online: https://codeblue.galencentre.org/2022/12/recap-top-10-malaysia-health-issues-in-2022/. (accessed on February 2025).

Bhati, D., Deogade, M. S., & Kanyal, D. (2023). Improving Patient Outcomes through Effective Hospital Administration: A Comprehensive Review. Cureus. doi:10.7759/cureus.47731.

Kaidi, H. M., Izhar, M. A. M., Dziyauddin, R. A., Shaiful, N. E., & Ahmad, R. (2024). A Comprehensive Review on Wireless Healthcare Monitoring: System Components. IEEE Access, 12, 35008–35032. doi:10.1109/access.2024.3349547.

Sharmila, E. M. N., Rama Krishna, K., Prasad, G. N. R., Anand, B., Kwatra, C. V., & Kapila, D. (2024). IoMT—Applications, Benefits, and Future Challenges in the Healthcare Domain. Advances in Fuzzy‐Based Internet of Medical Things (IoMT), 1-23. doi:10.1002/9781394242252.ch1.

Amini Gougeh, R., & Zilic, Z. (2024). Systematic Review of IoT-Based Solutions for User Tracking: Towards Smarter Lifestyle, Wellness and Health Management. Sensors, 24(18), 5939. doi:10.3390/s24185939.

Huang, S.-W., Chiou, S.-Y., Chen, R.-C., & Sub-r-pa, C. (2024). Enhancing Hospital Efficiency and Patient Care: Real-Time Tracking and Data-Driven Dispatch in Patient Transport. Sensors, 24(12), 4020. doi:10.3390/s24124020.

Halton, R. (2024). Laboratory Turnaround Time (TAT) | How To Reduce Turnaround Time In Labs. Sapio Sciences, Baltimore, United States. Available online: https://www.sapiosciences.com/blog/laboratory-turnaround-time-tat-how-to-reduce-turnaround-time-in-labs/ (accessed on February 2025).

Cherie, N., Berta, D. M., Tamir, M., Yiheyis, Z., Angelo, A. A., Mekuanint Tarekegn, A., Chane, E., Nigus, M., & Teketelew, B. B. (2024). Improving laboratory turnaround times in clinical settings: A systematic review of the impact of lean methodology application. PLOS ONE, 19(10), e0312033. doi:10.1371/journal.pone.0312033.

MOH. (2022). 2022 Annual Report. Malaysia’s Ministry of Health (MOH), Putrajaya, Malaysia. Available online: https://www.moh.gov.my/moh/resources/Penerbitan/Penerbitan%20Utama/2._MOH_Annual_Report_2022-compressed_.pdf (accessed on February 2025).

Kaldoudi, E. (2024). Smart hospital: The future of healthcare. Computational and Structural Biotechnology Journal, 24, 87–88. doi:10.1016/j.csbj.2023.12.011.

Zhu, H., Wu, C. K., KOO, C. H., Tsang, Y. T., Liu, Y., Chi, H. R., & Tsang, K.-F. (2019). Smart Healthcare in the Era of Internet-of-Things. IEEE Consumer Electronics Magazine, 8(5), 26–30. doi:10.1109/mce.2019.2923929.

Daiya, V., Ebenezer, J., Murty, S. A. V. S., & Raj, B. (2011). Experimental analysis of RSSI for distance and position estimation. 2011 International Conference on Recent Trends in Information Technology, 1093–1098. doi:10.1109/icrtit.2011.5972367.

Zhao, Q., Wen, H., Lin, Z., Xuan, D., & Shroff, N. (2020). On the Accuracy of Measured Proximity of Bluetooth-Based Contact Tracing Apps. Security and Privacy in Communication Networks. SecureComm 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 335. Springer, Cham, Switzerland. doi:10.1007/978-3-030-63086-7_4.

Heurtefeux, K., & Valois, F. (2012). Is RSSI a Good Choice for Localization in Wireless Sensor Network? 2012 IEEE 26th International Conference on Advanced Information Networking and Applications, 732–739. doi:10.1109/aina.2012.19.

Du, J., Yuan, C., Yue, M., & Ma, T. (2022). A Novel Localization Algorithm Based on RSSI and Multilateration for Indoor Environments. Electronics (Switzerland), 11(2), 289. doi:10.3390/electronics11020289.

Giovanelli, D., & Farella, E. (2018). RSSI or Time-of-flight for Bluetooth Low Energy based localization? An experimental evaluation. 2018 11th IFIP Wireless and Mobile Networking Conference (WMNC), 1–8. doi:10.23919/wmnc.2018.8480847.

Bensky, A. (2019). Short-range wireless communication. Newnes, London, United Kingdom. doi:10.1016/C2017-0-02356-X.

Li, R., Zhang, W., Wu, L., Tang, Y., & Xie, X. (2023). ZPA: A Smart Home Privacy Analysis System Based on ZigBee Encrypted Traffic. Wireless Communications and Mobile Computing, 2023, 1–16. doi:10.1155/2023/6731783.

Herris, D. (2021). Understanding decibels and decibel measurements. Test & Measurement Tips, Karlsruhe, Germany. Available Online: https://www.testandmeasurementtips.com/understanding-decibels-and-decibel-measurements-faq/#respond. (accessed on February 2025).

Yoon, J., Kim, H., & Kwon, S. (2024). Proximity-Based Adaptive Indoor Positioning Method Using Received Signal Strength Indicator. Applied Sciences, 14(8), 3319. doi:10.3390/app14083319.

Nordic Semiconductor. (2021). NRF52832: Versatile Bluetooth 5.4 SoC supporting Bluetooth Low Energy, Bluetooth mesh and NFC. Nordic Semiconductor, Trondheim, Norway. Available Online: https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/nRF52832-product-brief.pdf?hash=2F9D995F754BA2F2EA944A2C4351E682AB7CB0B9&la=en (accessed on February 2025).

Bisdikian, C. (2001). An overview of the Bluetooth wireless technology. IEEE Communications Magazine, 39(12), 86–94. doi:10.1109/35.968817.

Taley, D. S., & Pathak, B. (2020). Comprehensive Study of Software Testing Techniques and Strategies: A Review. International Journal of Engineering Research and Technology, 9(8), 817-822. doi:10.17577/ijertv9is080373.

Psyllidis, A., Gao, S., Hu, Y., Kim, E.-K., McKenzie, G., Purves, R., Yuan, M., & Andris, C. (2022). Points of Interest (POI): a commentary on the state of the art, challenges, and prospects for the future. Computational Urban Science, 2(1), 20. doi:10.1007/s43762-022-00047-w.

O’Neill, P. H. (2020). Bluetooth contact tracing needs bigger, better data. MIT Technology Review, Cambridge, United Kingdom. Available Online: https://www.technologyreview.com/2020/04/22/1000353/%20bluetooth-contact-tracing-needs-bigger-better-data/ (accessed on February 2025).

Pau, G., Arena, F., Gebremariam, Y. E., & You, I. (2021). Bluetooth 5.1: An Analysis of Direction Finding Capability for High-Precision Location Services. Sensors, 21(11), 3589. doi:10.3390/s21113589.

Shilpi, Gautam, P. R., Kumar, S., & Kumar, A. (2023). An optimized sensor node localization approach for wireless sensor networks using RSSI. The Journal of Supercomputing, 79(7), 7692-7716. doi:10.1007/s11227-022-04971-w.

Martínez Pérez, M., Cabrero-Canosa, M., Vizoso Hermida, J., Carrajo García, L., Llamas Gómez, D., Vázquez González, G., & Martín Herranz, I. (2012). Application of RFID Technology in Patient Tracking and Medication Traceability in Emergency Care. Journal of Medical Systems, 36(6), 3983–3993. doi:10.1007/s10916-012-9871-x.

Apte, A., Ingole, V., Lele, P., Marsh, A., Bhattacharjee, T., Hirve, S., Campbell, H., Nair, H., Chan, S., & Juvekar, S. (2019). Ethical considerations in the use of GPS-based movement tracking in health research – lessons from a care-seeking study in rural west India. Journal of Global Health, 9(1), 323. doi:10.7189/jogh.09.010323.

Li, X., & You, K. (2022). Real-time tracking and detection of patient conditions in the intelligent m-Health monitoring system. Frontiers in Public Health, 10. doi:10.3389/fpubh.2022.922718.


Full Text: PDF

DOI: 10.28991/HEF-2025-06-01-08

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Ganes Raj Muthu Arumugam, Kalaiarasi Sonai Muthu Anbananthen, Saravanan Muthaiyah