Investigating Ethanolic Extract from Acehnese Lime (Citrus aurantifolia) Peel as Potential Anti-Hypercholesterolemia Agent

Roma Sitio, Muslim Akmal, Marlina Marlina, Gholib Gholib

Abstract


Lime peels are rich in flavonoids, alkaloids, phenols, saponins, and tannins, exhibiting antibacterial, antioxidant, anti-inflammatory, anti-hypertensive, and anti-hypercholesterolemia properties. However, the specific active constituents of Acehnese lime peels and their impact on anti-hypercholesterolemia effects remain undisclosed. This present investigation aims to identify the active compounds in the ethanolic extract of locally obtained Acehnese lime (Citrus aurantifolia (Christm.) Swingle) peels and assess their potential as inhibitors of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) and 3-hydroxy-3-methylglutaryl-coenzyme-A (HMG Co-A) reductase using in-silico approach. The composition of the ethanolic extract Acehnese lime peel was determined through phytochemical analysis, 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, gas chromatography-mass spectrometry (GC-MS) analysis, and predictions of biological activity, while the biological activities of their compounds were evaluated through molecular docking. Phytochemicals revealed the presence of phenolics, flavonoids, tannins, saponins, and terpenoids in the ethanolic extract of local Aceh lime peel. The total phenolic and flavonoid contents were 29.992 ± 0.274 mg gallic acid equivalents (GAE)/g extract and 5.983 ± 0.017 mg quercetin equivalents (QE)/g extract, respectively. The anti-oxidant activity was notably strong with an IC50 value of 49.51 ppm. GC-MS analysis identified 6-methoxychroman-2-one (27.64%) as the primary component in ethanolic extract Acehnese lime peel, along with neric acid (C13H22O2) known as a regulator of lipid metabolism (Pa: 0.941). In-silicoinvestigations indicated that pterin-6-carboxylic acid (-7.8 kcal/mol) exhibited a higher binding free energy for the PCSK9 receptor compared to simvastatin (-7.6 kcal/mol), whereas the active compound (R)-9-(2,3-dihydroxy-3-methylbutoxy)-4- exhibited the highest binding capacity for HMG Co-A reductase (-6.9 kcal/mol) compared to other compounds. These findings suggest that the ethanolic extract of Acehnese lime peels could serve as an effective inhibitor of PCSK9 and HMG Co-A reductase, highlighting its potential as a novel anti-hypercholesterolemia agent.

 

Doi: 10.28991/HEF-2024-05-03-04

Full Text: PDF


Keywords


Citrus aurantifolia; Aceh Lime Peel; Anti-Hypercholesterolemia Agent; PCSK9; HMG-Coa Reductase.

References


Rivera, D., Bermúdez, A., Obón, C., Alcaraz, F., Ríos, S., Sánchez-Balibrea, J., Pablo Ferrer-Gallego, P., & Krueger, R. (2022). Analysis of ‘Marrakesh limetta’ (Citrus × limon var. limetta (Risso) Ollitrault, Curk & R.Krueger) horticultural history and relationships with limes and lemons. Scientia Horticulturae, 293, 110688. doi:10.1016/j.scienta.2021.110688.

WHO. (2023). World Heart Report 2023-Confronting the World’s Number One Killer. World Health Organization (WHO), Geneva, Switzerland.

Johnston, T. P., Korolenko, T. A., Pirro, M., & Sahebkar, A. (2017). Preventing cardiovascular heart disease: Promising nutraceutical and non-nutraceutical treatments for cholesterol management. Pharmacological Research, 120, 219–225. doi:10.1016/j.phrs.2017.04.008.

Klein, F., das Neves, V. J., Costa, R., Sanches, A., Sousa, T., Sampaio Moura, M. J. C., Paula, A., & Elena, D. (2012). Dyslipidemia Induced by Stress. Dyslipidemia - From Prevention to Treatment. doi:10.5772/28163.

Oppi, S., Lüscher, T. F., & Stein, S. (2019). Mouse Models for Atherosclerosis Research—Which Is My Line? Frontiers in Cardiovascular Medicine, 6. doi:10.3389/fcvm.2019.00046.

Gesto, D. S., Pereira, C. M. S., Cerqueira, N. M. F. S., & Sousa, S. F. (2020). An atomic-level perspective of HMG-CoA-reductase: The target enzyme to treat hypercholesterolemia. Molecules, 25(17), 3891. doi:10.3390/molecules25173891.

Page, M. M., & Watts, G. F. (2017). PCSK9 in context: contemporary review of an important biological target for the prevention and treatment of atherosclerotic cardiovascular disease. Diabetes, Obesity and Metabolism, 20(2), 270–282.. doi:10.1111/dom.13070.

Al-Mohaissen, M. A., Ignaszewski, M. J., Frohlich, J., & Ignaszewski, A. P. (2016). Statin-associated muscle adverse events: Update for clinicians. Sultan Qaboos University Medical Journal, 16(4), e406–e415. doi:10.18295/squmj.2016.16.04.002.

Tavori, H., Fan, D., Blakemore, J. L., Yancey, P. G., Ding, L., Linton, M. F., & Fazio, S. (2013). Serum proprotein convertase subtilisin/kexin type 9 and cell surface low-density lipoprotein receptor evidence for a reciprocal regulation. Circulation, 127(24), 2403–2413. doi:10.1161/CIRCULATIONAHA.113.001592.

Anderson, T. J., Grégoire, J., Pearson, G. J., Barry, A. R., Couture, P., Dawes, M., Francis, G. A., Genest, J., Grover, S., Gupta, M., Hegele, R. A., Lau, D. C., Leiter, L. A., Lonn, E., Mancini, G. B. J., McPherson, R., Ngui, D., Poirier, P., Sievenpiper, J. L., … Ward, R. (2016). 2016 Canadian Cardiovascular Society Guidelines for the Management of Dyslipidemia for the Prevention of Cardiovascular Disease in the Adult. Canadian Journal of Cardiology, 32(11), 1263–1282. doi:10.1016/j.cjca.2016.07.510.

Guo, Y. L., Zhang, W., & Li, J. J. (2014). PCSK9 and lipid lowering drugs. Clinica Chimica Acta, 437, 66–71. doi:10.1016/j.cca.2014.07.008.

Gearing, M. E., & Seim, K. (2015). Science in the News; A potential new weapon against heart disease: PCSK9 inhibitors. Available online: http://sitn.hms.harvard.edu/flash/2015/a-potential-new-weapon-against-heart-disease-pcsk9-inhibitors/ (accessed on May 2024).

Lin, X. L., Xiao, L. Le, Tang, Z. H., Jiang, Z. S., & Liu, M. H. (2018). Role of PCSK9 in lipid metabolism and atherosclerosis. Biomedicine and Pharmacotherapy, 104(December 2017), 36–44. doi:10.1016/j.biopha.2018.05.024.

Catapano, A. L., Graham, I., De Backer, G., Wiklund, O., John Chapman, M., Drexel, H., Hoes, A. W., Jennings, C. S., Landmesser, U., Pedersen, T. R., Reiner, Ž., Riccardi, G., Taskinen, M. R., Tokgozoglu, L., Monique Verschuren, W. M., Vlachopoulos, C., Wood, D. A., Zamorano, J. L., Badimon, L., … Wald, D. (2016). 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. European Heart Journal, 37(39), 2999-3058l. doi:10.1093/eurheartj/ehw272.

Tugume, P., & Nyakoojo, C. (2019). Ethno-pharmacological survey of herbal remedies used in the treatment of paediatric diseases in Buhunga parish, Rukungiri District, Uganda. BMC Complementary and Alternative Medicine, 19(1), 1–10. doi:10.1186/s12906-019-2763-6.

Scolaro, B., Soo Jin Kim, H., & de Castro, I. A. (2018). Bioactive compounds as an alternative for drug co-therapy: Overcoming challenges in cardiovascular disease prevention. Critical Reviews in Food Science and Nutrition, 58(6), 958–971. doi:10.1080/10408398.2016.1235546.

Yang, L., Wen, K. S., Ruan, X., Zhao, Y. X., Wei, F., & Wang, Q. (2018). Response of plant secondary metabolites to environmental factors. Molecules, 23(4), 1–26. doi:10.3390/molecules23040762.

Badawi, A. N. (2012). Medicinal & Aromatic Plants. Medicinal & Aromatic Plants, 1(02). doi:10.4172/2167-0412.1000e109.

González-Molina, E., Domínguez-Perles, R., Moreno, D. A., & García-Viguera, C. (2010). Natural bioactive compounds of Citrus limon for food and health. Journal of Pharmaceutical and Biomedical Analysis, 51(2), 327–345. doi:10.1016/j.jpba.2009.07.027.

Shafreen, R. B., Lubinska-Szczygeł, M., Różańska, A., Dymerski, T., Namieśnik, J., Katrich, E., & Gorinstein, S. (2018). Human serum interactions with phenolic and aroma substances of Kaffir (Citrus hystrix) and Key lime (Citrus aurantifolia) juices. Journal of Luminescence, 201(March), 115–122. doi:10.1016/j.jlumin.2018.04.010.

Spadaro, F., Costa, R., Circosta, C., & Occhiuto, F. (2012). Volatile composition and biological activity of key lime citrus aurantifolia essential oil. Natural Product Communications, 7(11), 1523–1526. doi:10.1177/1934578x1200701128.

Tundis, R., Loizzo, M. R., Bonesi, M., Menichini, F., Mastellone, V., Colica, C., & Menichini, F. (2012). Comparative study on the antioxidant capacity and cholinesterase inhibitory activity of Citrus aurantifolia Swingle, C. aurantium L., and C. bergamia Risso and Poit. peel essential oils. Journal of Food Science, 77(1), 40–46. doi:10.1111/j.1750-3841.2011.02511.x.

Amorim, J. L., Simas, D. L. R., Pinheiro, M. M. G., Moreno, D. S. A., Alviano, C. S., Da Silva, A. J. R., & Fernandes, P. D. (2016). Anti-inflammatory properties and chemical characterization of the essential oils of four Citrus species. PLoS ONE, 11(4). doi:10.1371/journal.pone.0153643.

Fagodia, S. K., Singh, H. P., Batish, D. R., & Kohli, R. K. (2017). Phytotoxicity and cytotoxicity of Citrus aurantiifolia essential oil and its major constituents: Limonene and citral. Industrial Crops and Products, 108(May), 708–715. doi:10.1016/j.indcrop.2017.07.005.

Lin, L.-Y., Chuang, C.-H., Chen, H.-C., & Yang, K.-M. (2019). Lime (Citrus aurantifolia (Christm.) Swingle) Essential Oils: Volatile Compounds, Antioxidant Capacity, and Hypolipidemic Effect. Foods, 8(9), 398. doi:10.3390/foods8090398.

Lin, L., Chuang, C., & Chen, H. (n.d.). Lime (Citrus aurantifolia (Christm.) Swingle) Essential Oils: Volatile Compounds, Anti-oxidant Capacity, and Hypolipidemic Effect. Foods, 8(398), 1–11.

Rachmawati, R., Idroes, R., Suhartono, E., Maulydia, N. B., & Darusman, D. (2022). In Silico and In Vitro Analysis of Tacca Tubers (Tacca leontopetaloides) from Banyak Island, Aceh Singkil Regency, Indonesia, as Antihypercholesterolemia Agents. Molecules, 27(23), 1–14. doi:10.3390/molecules27238605.

Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019). Total Phenolic content, Flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants, 8(4), 1–12. doi:10.3390/plants8040096.

Maeng, J. H., Muhammad Shahbaz, H., Ameer, K., Jo, Y., & Kwon, J. H. (2017). Optimization of Microwave-Assisted Extraction of Bioactive Compounds from Coriolus versicolor Mushroom Using Response Surface Methodology. Journal of Food Process Engineering, 40(2), 12421. doi:10.1111/jfpe.12421.

Ginting, B., Maulana, I., Yahya, M., Saidi, N., Murniana, M., Hasballah, K., Maulidna, M., & Rawati, S. (2022). Antioxidant and antiproliferative activities of n-hexane extract and its fractions from Blumea balsamifera L. leaves. Journal of Advanced Pharmaceutical Technology and Research, 13(3), 216–220. doi:10.4103/japtr.japtr_105_22.

Lagunin, A., Stepanchikova, A., Filimonov, D., & Poroikov, V. (2000). PASS: Prediction of activity spectra for biologically active substances. Bioinformatics, 16(8), 747–748. doi:10.1093/bioinformatics/16.8.747.

Maulydia, N. B., Khairan, K., Tallei, T. E., Estevam, E. C., Patwekar, M., Mohd Fauzi, F., & Idroes, R. (2023). GC-MS Analysis Reveals Unique Chemical Composition of Blumea balsamifera (L.) DC in Ie-Jue Geothermal Area. Grimsa Journal of Science Engineering and Technology, 1(1), 9–16. doi:10.61975/gjset.v1i1.6.

Zeb, M. A., Rahman, T. U., Sajid, M., Xiao, W., Musharraf, S. G., Bibi, S., Akitsu, T., & Liaqat, W. (2021). GC-MS Analysis and In Silico Approaches of Indigofera heterantha Root Oil Chemical Constituents. Compounds, 1(3), 116–124. doi:10.3390/compounds1030010.

Jasmine, J. M., & Vanaja, R. (2013). In silico analysis of phytochemical compounds for optimizing the inhibitors of HMG CoA reductase. Journal of Applied Pharmaceutical Science, 3(9), 43–47. doi:10.7324/JAPS.2013.3908.

Maulydia, N. B., Tallei, T. E., Ginting, B., Idroes, R., Illian, D. N., & Faradilla, M. (2022). Analysis of flavonoid compounds of Orange (Citrus sp.) peel as anti-main protease of SARS-CoV-2: A molecular docking study. IOP Conference Series: Earth and Environmental Science, 951(1), 1–8. doi:10.1088/1755-1315/951/1/012078.

Okwu, D. E. (2008). Citrus fruits: A rich source of phytochemicals and their roles in human health. International Journal of Chemical Sciences, 6(2), 451–471.

Indriyani, N. N., Anshori, J. Al, Permadi, N., Nurjanah, S., & Julaeha, E. (2023). Bioactive Components and Their Activities from Different Parts of Citrus aurantifolia (Christm.) Swingle for Food Development. Foods, 12(10), 1–23. doi:10.3390/foods12102036.

Herlina, Aziz, S. A., Kurniawati, A., & Faridah, D. N. (2017). Changes of Thymoquinone, Thymol, and Malondialdehyde Content of Black Cumin (Nigella sativa L.) in Response to Indonesia Tropical Altitude Variation. HAYATI Journal of Biosciences, 24(3), 156–161. doi:10.1016/j.hjb.2017.08.004.

Gahukar, R. T. (2014). Factors affecting content and bioefficacy of neem (Azadirachta indica A. Juss.) phytochemicals used in agricultural pest control: A review. Crop Protection, 62, 93–99. doi:10.1016/j.cropro.2014.04.014.

Tangpao, T., Chung, H. H., & Sommano, S. R. (2018). Aromatic profiles of essential oils from five commonly used Thai basils. Foods, 7(11), 1–13. doi:10.3390/foods7110175.

Czech, A., Malik, A., Sosnowska, B., & Domaradzki, P. (2021). Bioactive Substances, Heavy Metals, and Antioxidant Activity in Whole Fruit, Peel, and Pulp of Citrus Fruits. International Journal of Food Science, 2021, 1–14. doi:10.1155/2021/6662259.

Liu, W., Wang, D., Hou, X., Yang, Y., Xue, X., Jia, Q., Zhang, L., Zhao, W., & Yin, D. (2018). Effects of Growing Location on the Contents of Main Active Components and Antioxidant Activity of Dasiphora fruticosa (L.) Rydb. by Chemometric Methods. Chemistry and Biodiversity, 15(7), 1–42. doi:10.1002/cbdv.201800114.

Johnson, J. B., Batley, R., Manson, D., White, S., & Naiker, M. (2022). Volatile compounds, phenolic acid profiles and phytochemical content of five Australian finger lime (Citrus australasica) cultivars. LWT, 154(2022), 1–11. doi:10.1016/j.lwt.2021.112640.

Ogundele, O. O., & Bolade, M. K. (2021). Biochemical Characteristics and Antioxidant Properties of Citrus Juice from Lemon (Citrus limon), Lime (Citrus aurantifolia) and Grapefruit (Citrus paradisi) as Influenced by Degree of Ripening. Asian Food Science Journal, 40–51. doi:10.9734/afsj/2021/v20i330277.

Cao, Y., Bei, W., Hu, Y., Cao, L., Huang, L., Wang, L., Luo, D., Chen, Y., Yao, X., He, W., Liu, X., & Guo, J. (2012). Hypocholesterolemia of Rhizoma Coptidis alkaloids is related to the bile acid by up-regulated CYP7A1 in hyperlipidemic rats. Phytomedicine, 19(8–9), 686–692. doi:10.1016/j.phymed.2012.03.011.

Castro-Torres, I. G., De La O-Arciniega, M., Gallegos-Estudillo, J., Naranjo-Rodríguez, E. B., & Domínguez-Ortíz, M. Á. (2014). Raphanus sativus L. var niger as a source of Phytochemicals for the prevention of cholesterol gallstones. Phytotherapy Research, 28(2), 167–171. doi:10.1002/ptr.4964.

Millar, C. L., Duclos, Q., & Blesso, C. N. (2017). Effects of dietary flavonoids on reverse cholesterol transport, HDL metabolism, and HDL function. Advances in Nutrition, 8(2), 226–239. doi:10.3945/an.116.014050.

Leng, E., Xiao, Y., Mo, Z., Li, Y., Zhang, Y., Deng, X., Zhou, M., Zhou, C., He, Z., He, J., Xiao, L., Li, J., & Li, W. (2018). Synergistic effect of phytochemicals on cholesterol metabolism and lipid accumulation in HepG2 cells. BMC Complementary and Alternative Medicine, 18(1), 1–10. doi:10.1186/s12906-018-2189-6.

Li, Y., Xu, S., Mihaylova, M. M., Zheng, B., Hou, X., Jiang, B., Park, O., Luo, Z., Lefai, E., Shyy, J. Y.-J., Gao, B., Wierzbicki, M., Verbeuren, T. J., Shaw, R. J., Cohen, R. A., & Zang, M. (2011). AMPK Phosphorylates and Inhibits SREBP Activity to Attenuate Hepatic Steatosis and Atherosclerosis in Diet-Induced Insulin-Resistant Mice. Cell Metabolism, 13(4), 376–388. doi:10.1016/j.cmet.2011.03.009.

Ubwa, S. T., Anhwange, B. A., & Chia, J. T. (2011). Chemical Analysis of Tacca leontopetaloides Peels. American Journal of Food Technology, 6(10), 932–938. doi:10.3923/ajft.2011.932.938.

Singh, A., Maurya, S., Singh, U. P., & Singh, K. P. (2014). Chromatographic Analysis of Phenolic Acids in the Fruit Pulp of Some Citrus Varieties and Their Therapeutic Importance in Human Health. International Journal of Applied Science-Research and Review, 1(3), 150–154.

Kim, J. W., Ko, H. C., Jang, M. G., Han, S. H., Kim, H. J., & Kim, S. J. (2023). Phytochemical content and antioxidant activity in eight citrus cultivars grown in Jeju Island according to harvest time. International Journal of Food Properties, 26(1), 14–23. doi:10.1080/10942912.2022.2151620.

Leitzmann, C. (2016). Characteristics and Health Benefits of Phytochemicals. Forschende Komplementarmedizin, 23(2), 69–74. doi:10.1159/000444063.

Baskaran, G., Salvamani, S., Ahmad, S. A., Shaharuddin, N. A., Pattiram, P. D., & Shukor, M. Y. (2015). HMG-CoA reductase inhibitory activity and phytocomponent investigation of Basella alba leaf extract as a treatment for hypercholesterolemia. Drug Design, Development and Therapy, 9, 509–517. doi:10.2147/DDDT.S75056.

Sluijs, I., Cadier, E., Beulens, J. W. J., van der A, D. L., Spijkerman, A. M. W., & van der Schouw, Y. T. (2015). Dietary intake of carotenoids and risk of type 2 diabetes. Nutrition, Metabolism and Cardiovascular Diseases, 25(4), 376–381. doi:10.1016/j.numecd.2014.12.008.

Leenders, M., Leufkens, A. M., Siersema, P. D., Van Duijnhoven, F. J. B., Vrieling, A., Hulshof, P. J. M., Van Gils, C. H., Overvad, K., Roswall, N., Kyrø, C., Boutron-Ruault, M. C., Fagerhazzi, G., Cadeau, C., … Bueno-de-Mesquita, H. B. (2014). Plasma and dietary carotenoids and vitamins A, C and e and risk of colon and rectal cancer in the European Prospective Investigation into Cancer and Nutrition. International Journal of Cancer, 135(12), 2930–2939. doi:10.1002/ijc.28938.

Blekkenhorst, L. C., Sim, M., Bondonno, C. P., Bondonno, N. P., Ward, N. C., Prince, R. L., Devine, A., Lewis, J. R., & Hodgson, J. M. (2018). Cardiovascular health benefits of specific vegetable types: A narrative review. Nutrients, 10(5), 1–24. doi:10.3390/nu10050595.

Badarinath, A. V., Mallikarjuna Rao, K., Madhu Sudhana Chetty, C., Ramkanth, S., Rajan, T. V. S., & Gnanaprakash, K. (2010). A review on In-vitro antioxidant methods: Comparisions, correlations and considerations. International Journal of PharmTech Research, 2(2), 1276–1285.

Gulcin, İ. (2020). Antioxidants and antioxidant methods: an updated overview. Archives of Toxicology, 94(3), 651–715. doi:10.1007/s00204-020-02689-3.

Saeed, N., Khan, M. R., & Shabbir, M. (2012). Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complementary and Alternative Medicine, 12(221), 1–12. doi:10.1186/1472-6882-12-221.

Nawaz, H., Shad, M. A., Rehman, N., Andaleeb, H., & Ullah, N. (2020). Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian Journal of Pharmaceutical Sciences, 56(e17129), 1–9. doi:10.1590/s2175-97902019000417129.

Sun, S. X., Xie, R., Wang, X. X., Wen, G. Q., Liu, Z., Wang, W., Ju, X. J., & Chu, L. Y. (2015). Fabrication of nanofibers with phase-change core and hydrophobic shell, via coaxial electrospinning using nontoxic solvent. Journal of Materials Science, 50(17), 5729–5738. doi:10.1007/s10853-015-9118-6.

Lim, S., Choi, A. H., Kwon, M., Joung, E. J., Shin, T., Lee, S. G., Kim, N. G., & Kim, H. R. (2019). Evaluation of antioxidant activities of various solvent extract from Sargassum serratifolium and its major antioxidant components. Food Chemistry, 278, 178–184. doi:10.1016/j.foodchem.2018.11.058.

Heim, K. E., Tagliaferro, A. R., & Bobilya, D. J. (2002). Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. Journal of Nutritional Biochemistry, 13(10), 572–584. doi:10.1016/S0955-2863(02)00208-5.

Kim, S. Y., Kim, H. J., Lee, M. K., Jeon, S. M., Do, G. M., Kwon, E. Y., Cho, Y. Y., Kim, D. J., Jeong, K. S., Park, Y. B., Ha, T. Y., & Choi, M. S. (2006). Naringin time-dependently lowers hepatic cholesterol biosynthesis and plasma cholesterol in rats fed high-fat and high-cholesterol diet. Journal of Medicinal Food, 9(4), 582–586. doi:10.1089/jmf.2006.9.582.

Kumar, S., Sandhir, R., & Ojha, S. (2014). Evaluation of antioxidant activity and total phenol in different varieties of Lantana camara leaves. BMC Research Notes, 7(1), 1–9. doi:10.1186/1756-0500-7-560.

Al-Rubaye, A. F., Hameed, I. H., & Kadhim, M. J. (2017). A Review: Uses of Gas Chromatography-Mass Spectrometry (GC-MS) Technique for Analysis of Bioactive Natural Compounds of Some Plants. International Journal of Toxicological and Pharmacological Research, 9(01), 81–85. doi:10.25258/ijtpr.v9i01.9042.

Madhavan, G. R., Balraju, V., Mallesham, B., Chakrabarti, R., & Lohray, V. B. (2003). Novel coumarin derivatives of heterocyclic compounds as lipid-lowering agents. Bioorganic and Medicinal Chemistry Letters, 13(15), 2547–2551. doi:10.1016/S0960-894X(03)00490-6.

Taşdemir, E., Atmaca, M., Ylldlrlm, Y., Bilgin, H. M., Demirtaş, B., Obay, B. D., Kelle, M., & Oflazoǧlu, H. D. (2017). Influence of coumarin and some coumarin derivatives on serum lipid profiles in carbontetrachloride-exposed rats. Human and Experimental Toxicology, 36(3), 295–301. doi:10.1177/0960327116649675.

Tosun, A., Akkol, E. K., & Yeşilada, E. (2009). Anti-inflammatory and antinociceptive activity of coumarins from Seseli gummiferum subsp. corymbosum (Apiaceae). Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 64(1–2), 56–62. doi:10.1515/znc-2009-1-210.

Phucharoenrak, P., Muangnoi, C., & Trachootham, D. (2023). Metabolomic Analysis of Phytochemical Compounds from Ethanolic Extract of Lime (Citrus aurantifolia) Peel and Its Anti-Cancer Effects against Human Hepatocellular Carcinoma Cells. Molecules, 28(7), 2965. doi:10.3390/molecules28072965.

Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V., & Poroikov, V. V. (2014). Prediction of the biological activity spectra of organic compounds using the pass online web resource. Chemistry of Heterocyclic Compounds, 50(3), 444–457. doi:10.1007/s10593-014-1496-1.

Zhao, Y. Y., Cheng, X. L., Lin, R. C., & Wei, F. (2015). Lipidomics applications for disease biomarker discovery in mammal models. Biomarkers in Medicine, 9(2), 153–168. doi:10.2217/BMM.14.81.

Perrotti, F., Rosa, C., Cicalini, I., Sacchetta, P., Del Boccio, P., Genovesi, D., & Pieragostino, D. (2016). Advances in lipidomics for cancer biomarkers discovery. International Journal of Molecular Sciences, 17(12), 1–26. doi:10.3390/ijms17121992.

Grigoletto, L., Ferraz, J. B. S., Oliveira, H. R., Eler, J. P., Bussiman, F. O., Abreu Silva, B. C., Baldi, F., & Brito, L. F. (2020). Genetic Architecture of Carcass and Meat Quality Traits in Montana Tropical® Composite Beef Cattle. Frontiers in Genetics, 11(February), 1–13. doi:10.3389/fgene.2020.00123.

Diniyah, N., Alam, M. B., Javed, A., Alshammari, F. H., Choi, H. J., & Lee, S. H. (2023). In silico and docking studies on the binding activities of Keap1 of antioxidant compounds in non-oilseed legumes. Arabian Journal of Chemistry, 16(1), 1–8. doi:10.1016/j.arabjc.2022.104414.

McInnes, K. J., Corbould, A., Simpson, E. R., & Jones, M. E. (2006). Regulation of adenosine 5,monophosphate-activated protein kinase and lipogenesis by androgens contributes to visceral obesity in an estrogen-deficient state. Endocrinology, 147(12), 5907–5913. doi:10.1210/en.2006-0879.

Song, Z., Xiaoli, A. M., & Yang, F. (2018). Regulation and metabolic significance of De Novo lipogenesis in adipose tissues. Nutrients, 10(10), 1–22. doi:10.3390/nu10101383.

Gibney, J., Wolthers, T., Johannsson, G., Umpleby, A. M., & Ho, K. K. Y. (2005). Growth hormone and testosterone interact positively to enhance protein and energy metabolism in hypopituitary men. American Journal of Physiology-Endocrinology and Metabolism, 289(2), E266–E271. doi:10.1152/ajpendo.00483.2004.

Xu, X., De Pergola, G., & Björntorp, P. (1991). Testosterone increases lipolysis and the number of β-adrenoceptors in male rat adipocytes. Endocrinology, 128(1), 379–382. doi:10.1210/endo-128-1-379.

Eakman, G. D., Dallas, J. S., Ponder, S. W., & Keenan, B. S. (1996). The effects of testosterone and dihydrotestosterone on hypothalamic regulation of growth hormone secretion. The Journal of Clinical Endocrinology & Metabolism, 81(3), 1217–1223. doi:10.1210/jcem.81.3.8772602.

Zhang, D., Wei, Y., Huang, Q., Chen, Y., Zeng, K., Yang, W., Chen, J., & Chen, J. (2022). Important Hormones Regulating Lipid Metabolism. Molecules, 27(20), 1–20. doi:10.3390/molecules27207052.

Morris, G. M., & Lim-Wilby, M. (2008). Molecular docking. Methods in Molecular Biology, 443, 365–382. doi:10.1007/978-1-59745-177-2_19.

El fadili, M., Er-rajy, M., Ali Eltayb, W., Kara, M., Assouguem, A., Saleh, A., Al Kamaly, O., Zarougui, S., & Elhallaoui, M. (2023). In-silico screening based on molecular simulations of 3,4-disubstituted pyrrolidine sulfonamides as selective and competitive GlyT1 inhibitors. Arabian Journal of Chemistry, 16(10), 1–15. doi:10.1016/j.arabjc.2023.105105.

Liu, Q. H., Li, J. Q., Tang, J. W., Zhang, Y. D., Zhou, M. Y., Zhang, W., & Wang, L. (2023). Identification of antidiabetic constituents in Polygonatum odoratum (Mill.) Druce by UPLC-Orbitrap-MS, network pharmacology and molecular docking. Arabian Journal of Chemistry, 16(9), 1–12. doi:10.1016/j.arabjc.2023.105032.

Tallei, T. E., Tumilaar, S. G., Niode, N. J., Fatimawali, Kepel, B. J., Idroes, R., Effendi, Y., Sakib, S. A., & Emran, T. B. (2020). Potential of Plant Bioactive Compounds as SARS-CoV-2 Main Protease (Mpro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking Study. Scientifica, 2020, 1–18. doi:10.1155/2020/6307457.

Bulusu, G., & Desiraju, G. R. (2020). Strong and Weak Hydrogen Bonds in Protein–Ligand Recognition. Journal of the Indian Institute of Science, 100(1), 31–41. doi:10.1007/s41745-019-00141-9.

Sahil, M., Sarkar, S., & Mondal, J. (2023). Long-time-step molecular dynamics can retard simulation of protein-ligand recognition process. Biophysical Journal, 122(5), 802-816. doi:10.1016/j.bpj.2023.01.036.

Seidah, N. G. (2013). Proprotein Convertase Subtilisin Kexin 9 (PCSK9) Inhibitors in the Treatment of Hypercholesterolemia and other Pathologies. Current Pharmaceutical Design, 19(17), 3161–3172. doi:10.2174/13816128113199990313.

Delgoda, R. (2016). Pharmacognosy: Fundamentals, applications and strategies. Academic Press, Cambridge, United States.

Hung, W. L., Suh, J. H., & Wang, Y. (2017). Chemistry and health effects of furanocoumarins in grapefruit. Journal of Food and Drug Analysis, 25(1), 71–83. doi:10.1016/j.jfda.2016.11.008.

Sumorek-Wiadro, J., Zając, A., Maciejczyk, A., & Jakubowicz-Gil, J. (2020). Furanocoumarins in anticancer therapy – For and against. Fitoterapia, 142(2020), 1–8. doi:10.1016/j.fitote.2020.104492.

Zhang, Y. Y., Zhang, Q. Q., Song, J. L., Zhang, L., Jiang, C. S., & Zhang, H. (2018). Design, synthesis, and antiproliferative evaluation of novel coumarin/2-cyanoacryloyl hybrids as apoptosis inducing agents by activation of caspase-dependent pathway. Molecules, 23(8), 1–19. doi:10.3390/molecules23081972.


Full Text: PDF

DOI: 10.28991/HEF-2024-05-03-04

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Roma Sitio, Muslim Akmal, Marlina Marlina, Gholib Gholib