Technique for Segmentation and Selection of Biomedical Images
Abstract
Doi: 10.28991/HEF-2024-05-04-011
Full Text: PDF
Keywords
References
Fawzi, A., Achuthan, A., & Belaton, B. (2021). Brain image segmentation in recent years: A narrative review. Brain Sciences, 11(8), 1055. doi:10.3390/brainsci11081055.
Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D. L., & Erickson, B. J. (2017). Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions. Journal of Digital Imaging, 30(4), 449–459. doi:10.1007/s10278-017-9983-4.
Marchesin, S., Giachelle, F., Marini, N., Atzori, M., Boytcheva, S., Buttafuoco, G., Ciompi, F., Di Nunzio, G. M., Fraggetta, F., Irrera, O., Müller, H., Primov, T., Vatrano, S., & Silvello, G. (2022). Empowering digital pathology applications through explainable knowledge extraction tools. Journal of Pathology Informatics, 13, 100139. doi:10.1016/j.jpi.2022.100139.
Moser, E., Stadlbauer, A., Windischberger, C., Quick, H. H., & Ladd, M. E. (2009). Magnetic resonance imaging methodology. European Journal of Nuclear Medicine and Molecular Imaging, 36(SUPPL. 1), 30–41. doi:10.1007/s00259-008-0938-3.
Chen, J. E., & Glover, G. H. (2015). Functional Magnetic Resonance Imaging Methods. Neuropsychology Review, 25(3), 289–313. doi:10.1007/s11065-015-9294-9.
Budde, M. D., & Frank, J. A. (2012). Examining brain microstructure using structure tensor analysis of histological sections. NeuroImage, 63(1), 1–10. doi:10.1016/j.neuroimage.2012.06.042.
Polezhaev, D. V., Tatarkanov, A. A., & Alexandrov, I. A. (2023). Forming the Architecture of a Multi-Layered Model of Physical Data Storage for Complex Telemedicine Systems. HighTech and Innovation Journal, 4(4), 797–810. doi:10.28991/HIJ-2023-04-04-09.
Giger, M., & MacMahon, H. (1996). Image processing and computer-aided diagnosis. Radiologic Clinics of North America, 34(3), 565–596. doi:10.1016/s0033-8389(22)00492-4.
Bozek, J., Mustra, M., Delac, K., & Grgic, M. (2009). A survey of image processing algorithms in digital mammography. Studies in Computational Intelligence, 231, 631–657. doi:10.1007/978-3-642-02900-4_24.
Ghaheri, A., Shoar, S., Naderan, M., & Hoseini, S. S. (2015). The applications of genetic algorithms in medicine. Oman Medical Journal, 30(6), 406–416. doi:10.5001/omj.2015.82.
Jiao, L., & Zhao, J. (2019). A Survey on the New Generation of Deep Learning in Image Processing. IEEE Access, 7, 172231–172263. doi:10.1109/ACCESS.2019.2956508.
Das, S., & Konar, A. (2009). Automatic image pixel clustering with an improved differential evolution. Applied Soft Computing Journal, 9(1), 226–236. doi:10.1016/j.asoc.2007.12.008.
Yin, H., Varava, A., & Kragic, D. (2021). Modeling, learning, perception, and control methods for deformable object manipulation. Science Robotics, 6(54), eabd8803. doi:10.1126/scirobotics.abd8803.
Borodin, A. A., Kabulova, E. G., & Polozhentsev, K. A. (2016). Video detection of problems in the melting of consumable electrodes in a vacuum arc furnace. Steel in Translation, 46(5), 322–324. doi:10.3103/S0967091216050041.
Zhang, J., Zhong, Y., & Gu, C. (2018). Deformable Models for Surgical Simulation: A Survey. IEEE Reviews in Biomedical Engineering, 11, 143–164. doi:10.1109/RBME.2017.2773521.
Huang, X., Liu, Y., Li, Y., Qi, K., Gao, A., Zheng, B., Liang, D., & Long, X. (2023). Deep Learning-Based Multiclass Brain Tissue Segmentation in Fetal MRIs. Sensors, 23(2), 655. doi:10.3390/s23020655.
Yousaf, F., Iqbal, S., Fatima, N., Kousar, T., & Shafry Mohd Rahim, M. (2023). Multi-class disease detection using deep learning and human brain medical imaging. Biomedical Signal Processing and Control, 85, 104875. doi:10.1016/j.bspc.2023.104875.
Pan, S., Liu, X., Xie, N., & Chong, Y. (2023). EG-TransUNet: a transformer-based U-Net with enhanced and guided models for biomedical image segmentation. BMC Bioinformatics, 24(1), 85. doi:10.1186/s12859-023-05196-1.
Trombini, M., Solarna, D., Moser, G., & Dellepiane, S. (2023). A goal-driven unsupervised image segmentation method combining graph-based processing and Markov random fields. Pattern Recognition, 134, 109082. doi:10.1016/j.patcog.2022.109082.
Fernando, K. R. M., & Tsokos, C. P. (2023). Deep and statistical learning in biomedical imaging: State of the art in 3D MRI brain tumor segmentation. Information Fusion, 92, 450–465. doi:10.1016/j.inffus.2022.12.013.
Qiu, B., Wang, Z., Tang, Z., Chen, C., Fan, Z., & Li, W. (2016). Automated cropping intensity extraction from isolines of wavelet spectra. Computers and Electronics in Agriculture, 125, 1–11. doi:10.1016/j.compag.2016.04.015.
Gembris, D., Taylor, J. G., Schor, S., Frings, W., Suter, D., & Posse, S. (2000). Functional magnetic resonance imaging in real time (FIRE): Sliding- window correlation analysis and reference-vector optimization. Magnetic Resonance in Medicine, 43(2), 259–268. doi:10.1002/(SICI)1522-2594(200002)43:2<259::AID-MRM13>3.0.CO;2-P.
Barmak, A. V., Krak, Y. V., Manziuk, E. A., & Kasianiuk, V. S. (2019). Information technologyof separating hyperplanes synthesisfor linear classifiers. Journal of Automation and Information Sciences, 51(5), 54–64. doi:10.1615/JAutomatInfScien.v51.i5.50.
Schölkopf, B., Mika, S., Burges, C. J. C., Knirsch, P., Müller, K. R., Rätsch, G., & Smola, A. J. (1999). Input space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks, 10(5), 1000–1017. doi:10.1109/72.788641.
Alexandrov, I. A., Kirichek, A. V., Kuklin, V. Z., & Chervyakov, L. M. (2023). Development of an Algorithm for Multicriteria Optimization of Deep Learning Neural Networks. HighTech and Innovation Journal, 4(1), 157–173. doi:10.28991/HIJ-2023-04-01-011.
Petro, A. B., Sbert, C., & Morel, J.-M. (2014). Multiscale Retinex. Image Processing On Line, 4, 71–88. doi:10.5201/ipol.2014.107.
Akbas, E., & Ahuja, N. (2020). Low-level multiscale image segmentation and a benchmark for its evaluation. Computer Vision and Image Understanding, 199, 103026. doi:10.1016/j.cviu.2020.103026.
Veksler, O., Boykov, Y., & Mehrani, P. (2010). Superpixels and supervoxels in an energy optimization framework. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 6315 LNCS, 211–224. doi:10.1007/978-3-642-15555-0_16.
Ghassabeh, Y. A., & Rudzicz, F. (2018). Modified mean shift algorithm. IET Image Processing, 12(12), 2172–2177. doi:10.1049/iet-ipr.2018.5600.
Bechar, M. E. A., Settouti, N., Barra, V., & Chikh, M. A. (2018). Semi-supervised superpixel classification for medical images segmentation: application to detection of glaucoma disease. Multidimensional Systems and Signal Processing, 29(3), 979–998. doi:10.1007/s11045-017-0483-y.
Xu, G., Liu, M., Jiang, Z., Söffker, D., & Shen, W. (2019). Bearing fault diagnosis method based on deep convolutional neural network and random forest ensemble learning. Sensors (Switzerland), 19(5), 1088. doi:10.3390/s19051088.
Minciullo, L., Bromiley, P. A., Felson, D. T., & Cootes, T. F. (2017). Indecisive trees for classification and prediction of knee osteoarthritis. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 10541 LNCS, 283–290. Springer. doi:10.1007/978-3-319-67389-9_33.
Thomas, T., P. Vijayaraghavan, A., & Emmanuel, S. (2020). Applications of Decision Trees. Machine Learning Approaches in Cyber Security Analytics, 157–184. doi:10.1007/978-981-15-1706-8_9.
Ben naceur, M., Akil, M., Saouli, R., & Kachouri, R. (2020). Fully automatic brain tumor segmentation with deep learning-based selective attention using overlapping patches and multi-class weighted cross-entropy. Medical Image Analysis, 63, 101692. doi:10.1016/j.media.2020.101692.
Ellwaa, A., Hussein, A., AlNaggar, E., Zidan, M., Zaki, M., Ismail, M. A., & Ghanem, N. M. (2016). Brain tumor segmantation using random forest trained on iteratively selected patients. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 10154 LNCS, 129–137. Springer. doi:10.1007/978-3-319-55524-9_13.
Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P. M., & Larochelle, H. (2017). Brain tumor segmentation with Deep Neural Networks. Medical Image Analysis, 35, 18–31. doi:10.1016/j.media.2016.05.004.
Biratu, E. S., Schwenker, F., Debelee, T. G., Kebede, S. R., Negera, W. G., & Molla, H. T. (2021). Enhanced region growing for brain tumor MR image segmentation. Journal of Imaging, 7(2), 22. doi:10.3390/jimaging7020022.
DOI: 10.28991/HEF-2024-05-04-011
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Vladimir Zh. Kuklin, Leonid M. Chervyakov, Andrei N. Ruslantsev, Tagirbek G. Aslanov