The Potential of Ethanol Extract of Aleurites Moluccanus Leaves as TNF-α Inhibitor in Oral Incision Wound Care Model

Elfi Zahara, . Darmawi, Ummu Balqis, Cut Soraya

Abstract


Candlenut (Aleurites moluccanus) is a plant that has active components and is believed to have medical benefits in every part of this plant. This study aims Identified the active compounds in the ethanol extract of candlenut leaves from the Seulawah Mountains, Aceh, Indonesia, and evaluated their effectiveness in reducing inflammation through the inhibition of TNF-α. The extraction of candlenut leaves was conducted using ethanol as a solvent. The active compounds in the candlenut leaves extract were identified using phytochemical screening, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, gas chromatography-mass spectrometry (GC-MS), and their biological activity was assessed using molecular docking. This study further examined the effects of candlenut leaves extract on wound healing in male white rats in vivo and the inhibition of TNF-α levels using the ELISA method through candlenut leaves extract mouthwash formulations at concentrations of 12.5%, 25%, and 50%. Phytochemical screening results revealed that the ethanol extract of candlenut leaves contains abundant secondary metabolites, including alkaloids, flavonoids, steroids/terpenoids, tannins, phenols, and saponins. Antioxidant analysis demonstrated that the ethanol extract exhibited strong antioxidant activity with an IC50value of 89.221 ppm. GC-MS analysis identified 54 individual compounds in the extract, with five major compounds: n-hexadecanoic acid, isophytol, 9,12-octadecanoate-1-ol, octadecanoic acid, and squalene. These major compounds have significant bioactivities, including antioxidant, antibacterial, and antimicrobial properties. Molecular docking tests identified stigmasta-5,22-dien-3-ol and cycloheptadecanol as showing strong docking activity against TNF-α. Rats treated with the extract showed significant wound size reduction over 14 days, along with an increase in body weight. The extract also demonstrated an inhibitory effect on TNF-α concentration based on the dosage used. The anti-inflammatory effect of certain active compounds can reduce the regulation of specific cytokines, thereby inhibiting inflammation. These findings suggest that the active compounds in the ethanol extract of candlenut leaves have the potential to inhibit TNF-α, a key of pro-inflammatory cytokine, through significant antioxidant and anti-inflammatory activities.

 

Doi: 10.28991/HEF-2024-05-04-010

Full Text: PDF


Keywords


Aleurites Moluccanus; Anti-Inflammatory Activities; Antioxidant; Candlenut Leaves; TNF-α.

References


Yap, A. (2017). Oral Health Equals Total Health: A Brief Review. Journal of Dentistry Indonesia, 24(2), 59–62. doi:10.14693/jdi.v24i2.1122.

Afiati, R., Duarsa, P., Ramadhani, K., & Diana, S. (2017). Relationship between Mother's Behavior and Dental Health Maintenance. Dentino Jurnal Kedokteran Gigi, II(1), 56–62.

Chismirina, S., Sungkar, S., Adlim, M., & Darmawi, D. (2023). Streptococcus Mutans Serotype Analysis from Dental Plaque of Caries Patients in Banda Aceh Based on the GTF Gene. Reports of Biochemistry and Molecular Biology, 12(1), 205–210. doi:10.52547/rbmb.12.1.205.

Sen, C. K. (2019). Human Wounds and Its Burden: An Updated Compendium of Estimates. Advances in Wound Care, 8(2), 39–48. doi:10.1089/wound.2019.0946.

Hakim, R. F., Idroes, R., Hanafiah, O. A., Ginting, B., Fakhrurrazi, F., Putra, N. I., & Maulidya, N. B. (2024). Ethanolic extract of Gracilaria spp. Attenuates the inflammatory stage of oral mucosa wound healing: An in vivo study. Journal of Advanced Pharmaceutical Technology and Research, 15(2), 81–85. doi:10.4103/JAPTR.JAPTR_451_23.

Mohammad Shafie, N., Raja Shahriman Shah, R. N. I., Krishnan, P., Abdul Haleem, N., & Tan, T. Y. C. (2022). Scoping Review: Evaluation of Moringa oleifera (Lam.) for Potential Wound Healing in In Vivo Studies. Molecules, 27(17), 5541. doi:10.3390/molecules27175541.

Cai, H., Chen, J., Panagodage Perera, N. K., & Liang, X. (2020). Effects of Herbal Mouthwashes on Plaque and Inflammation Control for Patients with Gingivitis: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Evidence-Based Complementary and Alternative Medicine, 2020(1). doi:10.1155/2020/2829854.

Shafiq, N. E., & Mahdee, A. F. (2023). Moringa oleifera Use in Maintaining Oral Health and Its Potential Use in Regenerative Dentistry. Scientific World Journal, 2023, 1–8. doi:10.1155/2023/8876189.

Duane, B., Yap, T., Neelakantan, P., Anthonappa, R., Bescos, R., McGrath, C., McCullough, M., & Brookes, Z. (2023). Mouthwashes: Alternatives and Future Directions. International Dental Journal, 73, S89–S97. doi:10.1016/j.identj.2023.08.011.

Sharma, K., Madan, E., Nirwal, A., & Fatima, Z. (2024). Comparative evaluation of efficacy of chitosan and chlorhexidine mouthwash in plaque control and gingivitis: an observational study. Cureus, 16(10), e70810. doi:10.7759/cureus.70810.

Zhang, Y., Zhao, Y., Xu, C., Zhang, X., Li, J., Dong, G., Cao, J., & Zhou, T. (2019). Chlorhexidine exposure of clinical Klebsiella pneumoniae strains leads to acquired resistance to this disinfectant and to colistin. International Journal of Antimicrobial Agents, 53(6), 864–867. doi:10.1016/j.ijantimicag.2019.02.012.

Brookes, Z. L. S., Belfield, L. A., Ashworth, A., Casas-Agustench, P., Raja, M., Pollard, A. J., & Bescos, R. (2021). Effects of chlorhexidine mouthwash on the oral microbiome. Journal of Dentistry, 113, 103768. doi:10.1016/j.jdent.2021.103768.

Bescos, R., Ashworth, A., Cutler, C., Brookes, Z. L., Belfield, L., Rodiles, A., Casas-Agustench, P., Farnham, G., Liddle, L., Burleigh, M., White, D., Easton, C., & Hickson, M. (2020). Effects of Chlorhexidine mouthwash on the oral microbiome. Scientific Reports, 10(1), 5254. doi:10.1038/s41598-020-61912-4.

De Souza, M. M., Chagas, L. G. R. D., Gonçalves, A. E., Tomczak, M., Reichert, S., Schuquel, I. T. A., Cechinel-Filho, V., & Meyre-Silva, C. (2021). Phytochemical Analysis and Antinociceptive Properties of Hydroalcoholic Extracts of Aleurites moluccanus Bark#. Planta Medica, 87(10–11), 896–906. doi:10.1055/a-1497-0239.

Quintão, N. L. M., Pastor, M. V. D., Antonialli, C. de S., da Silva, G. F., Rocha, L. W., Berté, T. E., de Souza, M. M., Meyre-Silva, C., Lucinda-Silva, R. M., Bresolin, T. M. B., & Cechinel Filho, V. (2019). Aleurites moluccanus and its main active constituent, the flavonoid 2″-O-rhamnosylswertisin, in experimental model of rheumatoid arthritis. Journal of Ethnopharmacology, 235, 248–254. doi:10.1016/j.jep.2019.02.014.

Hakim, A., Jamaluddin, J., Idrus, S. W. Al, Jufri, A. W., & Ningsih, B. N. S. (2022). Ethnopharmacology, phytochemistry, and biological activity review of Aleurites moluccana. Journal of Applied Pharmaceutical Science, 12(4), 170–178. doi:10.7324/JAPS.2022.120419.

de Britto Rosa, M. C., Ribeiro, P. R., de Oliveira Silva, V., Selvati-Rezende, D. A. de C., da Silva, T. P., Souza, F. R., Cardoso, M. das G., Seixas, J. N., Andrade, E. F., Pardi, V., Murata, R. M., & Pereira, L. J. (2022). Fatty acids composition and in vivo biochemical effects of Aleurites moluccana seed (Candlenut) in obese wistar rats. Diabetology and Metabolic Syndrome, 14(1), 80. doi:10.1186/s13098-022-00847-4.

Dwiastuti, R., Yudanti, G. P., & Purba, A. F. Tween, Span and Sonication Time Optimization of Candlenut Seed Extract Nanoemulsion (Aleurites moluccana (L.) Willd) Central Composite Design Application. Proceeding Cendekia International Conference Health and Technology, 2, 154–165.

Saidi, N., Ginting, B., Murniana, M., & Mustanir, M. (2018). Analisis Metabolis Sekunder. In Analisis Metabolis Sekunder. Syiah Kuala University Press. doi:10.52574/syiahkualauniversitypress.244.

Ahmad, W., Singh, S., Kumar, S., & Waseem Ahmad, C. (2017). Phytochemical Screening and antimicrobial study of Euphorbia hirta extracts. Journal of Medicinal Plants Studies, 5(2), 183–186.

Igwe, K. K., Nwankwo, P. O., Otuokere, I. E., Ijioma, S. N., & Amaku, F. (2015). GCMS analysis of phytocomponents in the methanolic extract of Moringa oleifera leave. Journal of Research in Pharmaceutical science, 2(1), 1-6.

Lund, B. A., Thomassen, A. M., Carlsen, T. J. O., & Leiros, H. K. S. (2017). Structure, activity and thermostability investigations of OXA-163, OXA-181 and OXA-245 using biochemical analysis, crystal structures and differential scanning calorimetry analysis. Acta Crystallographica Section F: Structural Biology Communications, 73(10), 579–587. doi:10.1107/S2053230X17013838.

Maulydia, N. B., Tallei, T. E., Ginting, B., Idroes, R., Illian, D. N., & Faradilla, M. (2022). Analysis of flavonoid compounds of Orange (Citrus sp.) peel as anti-main protease of SARS-CoV-2: A molecular docking study. IOP Conference Series: Earth and Environmental Science, 951(1), 12078. doi:10.1088/1755-1315/951/1/012078.

Nagala, S., & Tamanam, R. R. (2017). Artocarpus methanol extract seed oil - A comparative study. International Journal of Pharmaceutical Sciences and Research, 8(4), 1781–1789.

Gulcin, İ. (2020). Antioxidants and antioxidant methods: an updated overview. Archives of Toxicology, 94(3), 651–715. doi:10.1007/s00204-020-02689-3.

Munekata, P. E., Alcántara, C., Collado, M. C., Garcia-Perez, J. V., Saraiva, J. A., Lopes, R. P., ... & Lorenzo, J. M. (2019). Ethnopharmacology, phytochemistry and biological activity of Erodium species: A review. Food research international, 126, 108659. doi:10.1016/j.foodres.2019.108659.

Kumar, S., Sandhir, R., & Ojha, S. (2014). Evaluation of antioxidant activity and total phenol in different varieties of Lantana camara leaves. BMC Research Notes, 7(1), 560. doi:10.1186/1756-0500-7-560.

Kim, S. Y., Kim, H. J., Lee, M. K., Jeon, S. M., Do, G. M., Kwon, E. Y., Cho, Y. Y., Kim, D. J., Jeong, K. S., Park, Y. B., Ha, T. Y., & Choi, M. S. (2006). Naringin time-dependently lowers hepatic cholesterol biosynthesis and plasma cholesterol in rats fed high-fat and high-cholesterol diet. Journal of Medicinal Food, 9(4), 582–586. doi:10.1089/jmf.2006.9.582.

Folquitto, D. G., Swiech, J. N. D., Pereira, C. B., Bobek, V. B., Halila Possagno, G. C., Farago, P. V., Miguel, M. D., Duarte, J. L., & Miguel, O. G. (2019). Biological activity, phytochemistry and traditional uses of genus Lobelia (Campanulaceae): A systematic review. Fitoterapia, 134, 23–38. doi:10.1016/j.fitote.2018.12.021.

Tao, R., Wang, C. Z., & Kong, Z. W. (2013). Antibacterial/antifungal activity and synergistic interactions between polyprenols and other lipids isolated from Ginkgo Biloba L. leaves. Molecules, 18(2), 2166–2182. doi:10.3390/molecules18022166.

Adam, A. Z., Lee, S. Y., & Mohamed, R. (2017). Pharmacological properties of agarwood tea derived from Aquilaria (Thymelaeaceae) leaves: An emerging contemporary herbal drink. Journal of Herbal Medicine, 10, 37–44. doi:10.1016/j.hermed.2017.06.002.

Lou-Bonafonte, J. M., Martínez-Beamonte, R., Sanclemente, T., Surra, J. C., Herrera-Marcos, L. V., Sanchez-Marco, J., Arnal, C., & Osada, J. (2018). Current Insights into the Biological Action of Squalene. Molecular Nutrition and Food Research, 62(15). doi:10.1002/mnfr.201800136.

Fernando, I. P. S., Sanjeewa, K. K. A., Samarakoon, K. W., Lee, W. W., Kim, H. S., & Jeon, Y. J. (2018). Squalene isolated from marine macroalgae Caulerpa racemosa and its potent antioxidant and anti-inflammatory activities. Journal of Food Biochemistry, 42(5), 12628. doi:10.1111/jfbc.12628.

Huang, Z. R., Lin, Y. K., & Fang, J. Y. (2009). Biological and pharmacological activities of squalene and related compounds: Potential uses in cosmetic dermatology. Molecules, 14(1), 540–554. doi:10.3390/molecules14010540.

Aparna, V., Dileep, K. V., Mandal, P. K., Karthe, P., Sadasivan, C., & Haridas, M. (2012). Anti-Inflammatory Property of n-Hexadecanoic Acid: Structural Evidence and Kinetic Assessment. Chemical Biology and Drug Design, 80(3), 434–439. doi:10.1111/j.1747-0285.2012.01418.x.

Gebreyohannes, G., & Sbhatu, D. B. (2023). Wild Mushrooms: A Hidden Treasure of Novel Bioactive Compounds. International Journal of Analytical Chemistry, 2023, 1–20. doi:10.1155/2023/6694961.

Toth, S., Lee, K. J., Havkin-Frenkel, D., Belanger, F. C., & Hartman, T. G. (2018). Volatile Compounds in Vanilla. Handbook of Vanilla Science and Technology, 285–347. Wiley. doi:10.1002/9781119377320.ch17.

Kalsum, N., Setiawan, B., & Wirawati, C. U. (2016). Phytochemical Studies and Gc-Ms Analysis of Propolis Trigona Spp. From Two Regions in Lampung Province of Indonesia. International Journal of Scientific & Engineering Research, 7(10), 173–180.

Manivannan, P., Muralitharan, G., & Balaji, N. P. (2017). Prediction aided in vitro analysis of octadecanoic acid from Cyanobacterium Lyngbya sp. as a proapoptotic factor in eliciting anti-inflammatory properties. Bioinformation, 13(09), 301–306. doi:10.6026/97320630013301.

Ramya, B., Malarvili, T., & Velavan, S. (2015). Gc-Ms Analysis of Bioactive Compounds in Bryonopsis Laciniosa Fruit Extract. International Journal of Pharmaceutical Sciences and Research, 6(8), 3375. doi:10.13040/IJPSR.0975-8232.6

Tallei, T. E., Tumilaar, S. G., Niode, N. J., Fatimawali, Kepel, B. J., Idroes, R., Effendi, Y., Sakib, S. A., & Emran, T. Bin. (2020). Potential of Plant Bioactive Compounds as SARS-CoV-2 Main Protease (Mpro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking Study. Scientifica, 2020, 1–18. doi:10.1155/2020/6307457.

Bakrim, S., Benkhaira, N., Bourais, I., Benali, T., Lee, L. H., El Omari, N., Sheikh, R. A., Goh, K. W., Ming, L. C., & Bouyahya, A. (2022). Health Benefits and Pharmacological Properties of Stigmasterol. Antioxidants, 11(10), 1912. doi:10.3390/antiox11101912.

Jin, J., Chowdhury, M. H. U., Das, T., Biswas, S., Wang, K., Rahman, M. H., Choi, K. Y., & Adnan, M. (2023). Chemico-biological interaction unraveled the potential mechanistic pathway of Ixeridium dentatum compounds against atopic dermatitis. Computational Biology and Chemistry, 106, 107933. doi:10.1016/j.compbiolchem.2023.107933.

Dar, K. B., Parry, R. A., Bhat, A. H., Beigh, A. H., Ahmed, M., Khaja, U. M., Ganie, A. H., Mir, M. A., Reshi, B. A., Khan, I. S., & Ganie, S. A. (2023). Immunomodulatory efficacy of Cousinia thomsonii C.B. Clarke in ameliorating inflammatory cascade expressions. Journal of Ethnopharmacology, 300, 115727. doi:10.1016/j.jep.2022.115727.

Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P., & Malik, A. B. (2014). Reactive oxygen species in inflammation and tissue injury. Antioxidants and Redox Signaling, 20(7), 1126–1167. doi:10.1089/ars.2012.5149.

Chen, G. L., Fan, M. X., Wu, J. L., Li, N., & Guo, M. Q. (2019). Antioxidant and anti-inflammatory properties of flavonoids from lotus plumule. Food Chemistry, 277, 706–712. doi:10.1016/j.foodchem.2018.11.040.

Gao, S., Zhang, P., Zhang, C., Bao, F., Li, H., & Chen, L. (2018). Meroterpenoids from Ganoderma sinense protect hepatocytes and cardiomyocytes from oxidative stress induced injuries. Fitoterapia, 131, 73–79. doi:10.1016/j.fitote.2018.10.009.

Tanasă, F., Nechifor, M., & Teacă, C. A. (2024). Essential Oils as Alternative Green Broad-Spectrum Biocides. Plants, 13(23), 3442. doi:10.3390/plants13233442.

Abd, S. O., & Mohamad, R. R. (2010). Antibacterial activity of aleurites moluccana (Euphorbiaceae) against some clinical isolates. Research Journal of Biotechnology, 5(3), 25–30.

Essiet, G. A., Anwankwo, M. U., Akuodor, G. C., Ajoku, G. A., Ofor, C. C., Megwas, A. U., & Aja, D. O. J. (2019). Antibacterial and toxicological evaluation of the ethanol leaf extract of Anthonotha macrophylla. Journal of HerbMed Pharmacology, 8(3), 205–211. doi:10.15171/jhp.2019.30.

Del Bo’, C., Roursgaard, M., Porrini, M., Loft, S., Møller, P., & Riso, P. (2016). Different effects of anthocyanins and phenolic acids from wild blueberry (Vaccinium angustifolium) on monocytes adhesion to endothelial cells in a TNF-α stimulated proinflammatory environment. Molecular Nutrition and Food Research, 60(11), 2355–2366. doi:10.1002/mnfr.201600178.

Wu, Y. L., Han, F., Luan, S. S., Ai, R., Zhang, P., Li, H., & Chen, L. X. (2019). Triterpenoids from Ganoderma lucidum and Their Potential Anti-inflammatory Effects. Journal of Agricultural and Food Chemistry, 67(18), 5147–5158. doi:10.1021/acs.jafc.9b01195.

Goldnesia, I. (2016). The Effect of Candlenut Leaf Extract (Aleurites Moluccana) on Tumor Necrosis Factor-Alpha (Tnf-Α) Levels in the Serum of Rattus Norvegicus Wistar Strain Type 2 Diabetes Mellitus Model. Universitas Brawijaya, Malang, Indonesia.


Full Text: PDF

DOI: 10.28991/HEF-2024-05-04-010

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Elfi Zahara, Darmawi Darmawi, Ummu Balqis, Cut Soraya