A Brief Overview of Spray Drying Technology and Its Potential in Food Applications

Andri Cahyo Kumoro, Dyah Hesti Wardhani, Tutuk Djoko Kusworo, Mohammad Djaeni, Tan Chin Ping, Misbahudin Alhanif


Spray drying is one of the most preferred preservation methods that converts an aqueous feed containing solvent, carrier agent, and food compounds into dry powder with superb physicochemical and functional properties. This paper reviews the fundamental and important operating parameters, product characteristics, current and potential applications, and techno-economic aspects of spray drying. The key operating parameters should be chosen to achieve the highest spray drying performance in terms of operational efficiency and product quality. A successful spray drying operation is greatly dependent on the feed material properties, the mechanical design of the equipment, and selected operating parameters. This paper also found that water content, water activity, and glass transition temperature are the main parameters that really determine product quality in terms of shelf life and storage conditions of food powder obtained from the spray drying process. Recent advances in the development of new heatless spray drying technology in the manufacture of food flavoring and nutraceuticals are interesting to develop, in addition to the potential to produce nano-sized powders with distinctive properties and the use of superheated steam and carbon dioxide to sterilize products. The appropriate information on spray drying technology featured in this paper is targeted to reinforce researcher and practitioner understanding for widening its applications in pertinent food industries.


Doi: 10.28991/HEF-2024-05-02-09

Full Text: PDF


Equipment; Food Application; Operation Method; Performance; Powder Product; Spray Drying.


The United Republic of Tanzania (2014). The Cooperative Societies Act. Dar Es Salaam, 95(1), 1–111. Available online: https://www.ushirika.go.tz/uploads/The-Cooperative-Societies-Act-2013.pdf (accessed on March 2024)

Alegbeleye, O., Odeyemi, O. A., Strateva, M., & Stratev, D. (2022). Microbial spoilage of vegetables, fruits and cereals. Applied Food Research, 2(1), 100122. doi:10.1016/j.afres.2022.100122.

Needham, R., Williams, J., Beales, N., Voysey, P., & Magan, N. (2005). Early detection and differentiation of spoilage of bakery products. Sensors and Actuators, B: Chemical, 106(Special Issue), 20–23. doi:10.1016/j.snb.2004.05.032.

Anandharamakrishnan, C., & Ishwarya, S. P. (2015). Spray drying for nanoencapsulation of food components. In Spray Drying Techniques for Food Ingredient Encapsulation. John Wiley & Sons, New Jersey, United States. doi:10.1002/9781118863985.ch8.

Sangamithra, A., Venkatachalam, S., John, S. G., & Kuppuswamy, K. (2015). Foam Mat Drying of Food Materials: A Review. Journal of Food Processing and Preservation, 39(6), 3165–3174. doi:10.1111/jfpp.12421.

Mehrotra, P. K. (2014). Powder Processing and Green Shaping. Comprehensive Hard Materials, Volume 1, 213-235. doi:10.1016/B978-0-08-096527-7.00007-6.

Mohammed, N. K., Tan, C. P., Manap, Y. A., Muhialdin, B. J., & Hussin, A. S. M. (2020). Spray Drying for the Encapsulation of Oils—A Review. Molecules, 25(17), 1–16. doi:10.3390/molecules25173873.

Patil, V., Chauhan, A. K., & Singh, R. P. (2014). Optimization of the spray-drying process for developing guava powder using response surface methodology. Powder Technology, 253, 230–236. doi:10.1016/j.powtec.2013.11.033.

Samantha, S. C., Bruna, A. S. M., Adriana, R. M., Fabio, B., Sandro, A. R., & Aline, R. C. A. (2015). Drying by spray drying in the food industry: Micro-encapsulation, process parameters and main carriers used. African Journal of Food Science, 9(9), 462–470. doi:10.5897/ajfs2015.1279.

Zhu, P., Patel, K., Lin, S., Méjean, S., Blanchard, E., Chen, X. D., Schuck, P., & Jeantet, R. (2011). Simulating industrial spray-drying operations using a reaction engineering approach and a modified desorption method. Drying Technology, 29(4), 419–428. doi:10.1080/07373937.2010.501928.

Sosnik, A., & Seremeta, K. P. (2015). Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Advances in Colloid and Interface Science, 223, 40–54. doi:10.1016/j.cis.2015.05.003.

Bajac, J., Nikolovski, B., Lončarević, I., Petrović, J., Bajac, B., Đurović, S., & Petrović, L. (2022). Microencapsulation of juniper berry essential oil (Juniperus communis L.) by spray drying: microcapsule characterization and release kinetics of the oil. Food Hydrocolloids, 125, 107430. doi:10.1016/j.foodhyd.2021.107430.

Boel, E., Koekoekx, R., Dedroog, S., Babkin, I., Vetrano, M. R., Clasen, C., & Van den Mooter, G. (2020). Unraveling particle formation: From single droplet drying to spray drying and electrospraying. Pharmaceutics, 12(7), 1–58. doi:10.3390/pharmaceutics12070625.

Chever, S., Méjean, S., Dolivet, A., Mei, F., Den Boer, C. M., Le Barzic, G., Jeantet, R., & Schuck, P. (2017). Agglomeration during spray drying: Physical and rehydration properties of whole milk/sugar mixture powders. LWT - Food Science and Technology, 83, 33–41. doi:10.1016/j.lwt.2017.05.002.

Linke, T., Happe, J., & Kohlus, R. (2022). Laboratory-scale superheated steam spray drying of food and dairy products. Drying Technology, 40(8), 1703–1714. doi:10.1080/07373937.2020.1870127.

Cesa, S., Casadei, M. A., Cerreto, F., & Paolicelli, P. (2015). Infant milk formulas: Effect of storage conditions on the stability of powdered products towards autoxidation. Foods, 4(3), 487–500. doi:10.3390/foods4030487.

Vicente, J., Pinto, J., Menezes, J., & Gaspar, F. (2013). Fundamental analysis of particle formation in spray drying. Powder Technology, 247, 1–7. doi:10.1016/j.powtec.2013.06.038.

Anu Bhushani, J., & Anandharamakrishnan, C. (2014). Electrospinning and electrospraying techniques: Potential food-based applications. Trends in Food Science and Technology, 38(1), 21–33. doi:10.1016/j.tifs.2014.03.004.

Masters, K. (2002). Spray Drying in Practice. Spray Dry Consult, Charlottenlund, Denmark.

Jaworek, A. (2007). Micro- and nanoparticle production by electrospraying. Powder Technology, 176(1), 18–35. doi:10.1016/j.powtec.2007.01.035.

Woo, M. W., & Bhandari, B. (2013). Spray drying for food powder production. In Handbook of Food Powders: Processes and Properties: Woodhead Publishing, 29–56. doi:10.1533/9780857098672.1.29.

Zbicinski, I., & Piatkowski, M. (2009). Continuous and Discrete Phase Behavior in Counter current Spray Drying Process. Drying Technology, 27(12), 1353–1362. doi:10.1080/07373930903383661.

Wawrzyniak, P., Jaskulski, M., Piatkowski, M., Sobulska, M., Zbicinski, I., & Egan, S. (2020). Experimental detergent drying analysis in a counter-current spray dryer with swirling air flow. Drying Technology, 38(1–2), 108–116. doi:10.1080/07373937.2019.1626878.

Dolinsky, A. A. (2001). High-temperature spray drying. Drying Technology, 19(5), 785–806. doi:10.1081/DRT-100103770.

Seydel, P., Blömer, J., & Bertling, J. (2006). Modeling particle formation at spray drying using population balances. Drying Technology, 24(2), 137–146. doi:10.1080/07373930600558912.

Gohel, M. C., Parikh, R. K., Nagori, S. A., Bariya, S. H., Gandhi, A. V, Shroff, M. S., Patel, P. K., Gandhi, C. S., Patel, V. P., Bhagat, N. Y., Poptani, S. D., Kharadi, S. R., & R.B.Pandya, T. C. P. (2009). Spray drying: A Review. Pharmaceutical Reviews, 7(5), 21-48.

Etzel, R. (1996). Special extract of Boswellia serrata (H15) in the treatment of rheumatoid arthritis. Phytomedicine, 3(1), 91–94. doi:10.1016/S0944-7113(96)80019-5.

Moy, J. H. (1971). Vacuum-puff freeze drying of tropical fruit juices. Journal of Food Science, 36(6), 906-910. doi:10.1111/j.1365-2621.1971.tb15557.x.

Ciobanu, C., Istrate, I. A., Tudor, P., & Voicu, G. (2021). Dust emission monitoring in cement plant mills: A case study in Romania. International Journal of Environmental Research and Public Health, 18(17), 9096. doi:10.3390/ijerph18179096.

Amit, S. K., Uddin, M. M., Rahman, R., Islam, S. M. R., & Khan, M. S. (2017). A review on mechanisms and commercial aspects of food preservation and processing. Agriculture and Food Security, 6(1), 1–22. doi:10.1186/s40066-017-0130-8.

Barbosa-Cánovas, G. V., Vega-Mercado, H., Barbosa-Cánovas, G. V., & Vega-Mercado, H. (1996). Spray drying. Dehydration of foods, 185-227. doi:10.1007/978-1-4757-2456-1_6.

Datta, A., & Som, S. K. (2000). Numerical prediction of air core diameter, coefficient of discharge and spray cone angle of a swirl spray pressure nozzle. International Journal of Heat and Fluid Flow, 21(4), 412–419. doi:10.1016/S0142-727X(00)00003-5.

Huang, L. X., Kumar, K., & Mujumdar, A. S. (2006). A comparative study of a spray dryer with rotary disc atomizer and pressure nozzle using computational fluid dynamic simulations. Chemical Engineering and Processing: Process Intensification, 45(6), 461–470. doi:10.1016/j.cep.2005.11.004.

Tratnig, A., Brenn, G., Strixner, T., Fankhauser, P., Laubacher, N., & Stranzinger, M. (2009). Characterization of spray formation from emulsions by pressure-swirl atomizers for spray drying. Journal of Food Engineering, 95(1), 126–134. doi:10.1016/j.jfoodeng.2009.04.015.

Lee, E. J., Oh, S. Y., Kim, H. Y., James, S. C., & Yoon, S. S. (2010). Measuring air core characteristics of a pressure-swirl atomizer via a transparent acrylic nozzle at various Reynolds numbers. Experimental Thermal and Fluid Science, 34(8), 1475–1483. doi:10.1016/j.expthermflusci.2010.07.010.

Zaror, C. A., & Pérez-Correa, J. R. (1991). Model based control of centrifugal atomizer spray drying. Food Control, 2(3), 170–175. doi:10.1016/0956-7135(91)90086-C.

Zhao, Y. Y. (2006). Considerations in designing a centrifugal atomiser for metal powder production. Materials and Design, 27(9), 745–750. doi:10.1016/j.matdes.2005.01.011.

Juslin, L., Antikainen, O., Merkku, P., & Yliruusi, J. (1995). Droplet size measurement: II. Effect of three independent variables on parameters describing the droplet size distribution from a pneumatic nozzle studied by multilinear stepwise regression analysis. International Journal of Pharmaceutics, 123(2), 257–264. doi:10.1016/0378-5173(95)00082-T.

Hede, P. D., Bach, P., & Jensen, A. D. (2008). Two-fluid spray atomisation and pneumatic nozzles for fluid bed coating/agglomeration purposes: A review. Chemical Engineering Science, 63(14), 3821–3842. doi:10.1016/j.ces.2008.04.014.

Masters, K. (1968). Spray Drying: The Unit Operation Today. Industrial and Engineering Chemistry, 60(10), 53–63. doi:10.1021/ie50706a008.

Patel, R. P., Patel, M. P., & Suthar, A. M. (2009). Spray drying technology: An overview. Indian Journal of Science and Technology, 2(10), 44–47. doi:10.17485/ijst/2009/v2i10.3.

Rashid, M. S. F. M., Hamid, A. H. A., Sheng, O. C., & Ghaffar, Z. A. (2012). Effect of inlet slot number on the spray cone angle and discharge coefficient of swirl atomizer. Procedia Engineering, 41, 1781–1786. doi:10.1016/j.proeng.2012.07.383.

Sabah, N., Al-Mukhtar, M., & Shemal, K. (2023). Implementing Management Practices for Enhancing Water-Food Nexus Under Climate Change. Civil Engineering Journal, 9(12), 3108-3122. doi:10.28991/CEJ-2023-09-12-010.

Currie, J. S., & Pritchard, C. L. (1994). Energy recovery and plume reduction from an industrial spray drying unit using an absorption heat transformer. Heat Recovery Systems and CHP, 14(3), 239–248. doi:10.1016/0890-4332(94)90019-1.

Walmsley, T. G., Walmsley, M. R. W., Atkins, M. J., Hoffman-Vocke, J., & Neale, J. R. (2012). Numerical performance comparison of different tube cross-sections for heat recovery from particle-laden exhaust gas streams. Procedia Engineering, 42, 1351–1364. doi:10.1016/j.proeng.2012.07.527.

Atkins, M. J., Walmsley, M. R., & Neale, J. R. (2011). Integrating heat recovery from milk powder spray dryer exhausts in the dairy industry. Applied Thermal Engineering, 31(13), 2101-2106. doi:10.1016/j.applthermaleng.2011.03.006.

Velić, D., Bilić, M., Tomas, S., & Planinić, M. (2003). Simulation, calculation and possibilities of energy saving in spray drying process. Applied Thermal Engineering, 23(16), 2119–2131. doi:10.1016/S1359-4311(03)00165-0.

Alves, A., Paiva, J., & Salcedo, R. (2015). Cyclone optimization including particle clustering. Powder Technology, 272, 14–22. doi:10.1016/j.powtec.2014.11.016.

Moejes, S. N., Visser, Q., Bitter, J. H., & van Boxtel, A. J. B. (2018). Closed-loop spray drying solutions for energy efficient powder production. Innovative Food Science and Emerging Technologies, 47, 24–37. doi:10.1016/j.ifset.2018.01.005.

Truong, V., Bhandari, B. R., & Howes, T. (2005). Optimization of co-current spray drying process of sugar-rich foods. Part I-Moisture and glass transition temperature profile during drying. Journal of Food Engineering, 71(1), 55–65. doi:10.1016/j.jfoodeng.2004.10.017.

Truong, V., Bhandari, B. R., & Howes, T. (2005). Optimization of cocurrent spray drying process for sugar-rich foods. Part II-Optimization of spray drying process based on glass transition concept. Journal of Food Engineering, 71(1), 66–72. doi:10.1016/j.jfoodeng.2004.10.018.

Phisut, N. (2012). Spray drying technique of fruit juice powder: Some factors influencing the properties of product. International Food Research Journal, 19(4), 1297–1306.

Hiller, C., Boork, M., Enger, J., & Wendin, K. (2023). User-Centric Measures of the Perceived Light Qualities of Lighting Products. Emerging Science Journal, 7(2), 609-628. doi:10.28991/ESJ-2023-07-02-022.

Ali, M., Mahmud, T., Heggs, P. J., Ghadiri, M., Djurdjevic, D., Ahmadian, H., Juan, L. M. de, Amador, C., & Bayly, A. (2014). A one-dimensional plug-flow model of a counter-current spray drying tower. Chemical Engineering Research and Design, 92(5), 826–841. doi:10.1016/j.cherd.2013.08.010.

Ziaee, A., Albadarin, A. B., Padrela, L., Femmer, T., O’Reilly, E., & Walker, G. (2019). Spray drying of pharmaceuticals and biopharmaceuticals: Critical parameters and experimental process optimization approaches. European Journal of Pharmaceutical Sciences, 127, 300–318. doi:10.1016/j.ejps.2018.10.026.

Lee, J. K. M., Taip, F. S., & Abdulla, H. Z. (2018). Effectiveness of additives in spray drying performance: a review. Food Research, 2(6), 486–499. doi:10.26656/fr.2017.2(6).134.

Martínez, J. (1996). Closed-cycle drying of solids. Drying Technology, 14(5), 1041–1062. doi:10.1080/07373939608917139.

Woo, M. W., Daud, W. R. W., Tasirin, S. M., & Talib, M. Z. M. (2007). Optimization of the spray drying operating parameters - A quick trial-and-error method. Drying Technology, 25(10), 1741–1747. doi:10.1080/07373930701591093.

Bhandari, B. R., Datta, N., Crooks, R., Howes, T., & Rigby, S. (1997). A semi-empirical approach to optimise the quantity of drying AIDS required to spray dry sugar-rich foods. Drying Technology, 15(10), 2509–2525. doi:10.1080/07373939708917373.

Ozmen, L., & Langrish, T. A. G. (2003). An experimental investigation of the wall deposition of milk powder in a pilot-scale spray dryer. Drying Technology, 21(7), 1253–1272. doi:10.1081/DRT-120023179.

Lin, J. C., & Gentry, J. W. (2003). Spray drying drop morphology: Experimental study. Aerosol Science and Technology, 37(1), 15–32. doi:10.1080/02786820300888.

Bhandari, B. R., Senoussi, A., Dumoulin, E. D., & Lebert, A. (1993). Spray Drying of Concentrated Fruit Juices. Drying Technology, 11(5), 1081–1092. doi:10.1080/07373939308916884.

Roos, Y. H. (1993). Water activity and physical state effects on amorphous food stability. Journal of Food Processing and Preservation, 16(6), 433–447. doi:10.1111/j.1745-4549.1993.tb00221.x.

Jittanit, W., Niti-Att, D., & Techanuntachaikul, O. (2010). Study of spray drying of pineapple juice using maltodextrin as an adjunct. Chiang Mai Journal of Science, 37(3), 498–506.

Tonon, R. V., Brabet, C., & Hubinger, M. D. (2008). Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. Journal of Food Engineering, 88(3), 411–418. doi:10.1016/j.jfoodeng.2008.02.029.

Fazaeli, M., Emam-Djomeh, Z., Kalbasi Ashtari, A., & Omid, M. (2012). Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing, 90(4), 667–675. doi:10.1016/j.fbp.2012.04.006.

Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40(9), 1107–1121. doi:10.1016/j.foodres.2007.07.004.

Wang, R., & Hartel, R. W. (2021). Understanding stickiness in sugar-rich food systems: A review of mechanisms, analyses, and solutions of adhesion. Comprehensive Reviews in Food Science and Food Safety, 20(6), 5901–5937. doi:10.1111/1541-4337.12833.

Adhikari, B., Howes, T., Bhandari, B. R., & Truong, V. (2003). Characterization of the surface stickiness of fructose-maltodextrin solutions during drying. Drying Technology, 21(1), 17–34. doi:10.1081/DRT-120017281.

Murugesan, R., & Orsat, V. (2012). Spray Drying for the Production of Nutraceutical Ingredients-A Review. Food and Bioprocess Technology, 5(1), 3–14. doi:10.1007/s11947-011-0638-z.

Bilancetti, L., Poncelet, D., Loisel, C., Mazzitelli, S., & Nastruzzi, C. (2010). A statistical approach to optimize the spray drying of starch particles: Application to dry powder coating. AAPS PharmSciTech, 11(3), 1257–1267. doi:10.1208/s12249-010-9492-y.

Chegini, G., HamidiSepehr, A., Dizaji, M. F., & Mirnezami, S. V. (2014). Study of physical and chemical properties of spray drying whey powder. International Journal of Recycling of Organic Waste in Agriculture, 3(2), 62. doi:10.1007/s40093-014-0062-2.

Nijdam, J. J., & Langrish, T. A. G. (2006). The effect of surface composition on the functional properties of milk powders. Journal of Food Engineering, 77(4), 919–925. doi:10.1016/j.jfoodeng.2005.08.020.

Papadakis, S. E., Gardeli, C., & Tzia, C. (1998). Raisin extract powder: Production, physical and sensory properties. Proc. 11th International Drying Symposium IDS, 98, 1207–1213.

Furuta, T., Hayash, H., & Ohash, T. (1994). Some criteria of spray dryer design for food liquid. Drying Technology, 12(1–2), 151–177. doi:10.1080/07373939408959952.

Oldfield, D. J., Taylor, M. W., & Singh, H. (2005). Effect of preheating and other process parameters on whey protein reactions during skim milk powder manufacture. International Dairy Journal, 15(5), 501–511. doi:10.1016/j.idairyj.2004.09.004.

Maas, S. G., Schaldach, G., Littringer, E. M., Mescher, A., Griesser, U. J., Braun, D. E., Walzel, P. E., & Urbanetz, N. A. (2011). The impact of spray drying outlet temperature on the particle morphology of mannitol. Powder Technology, 213(1), 27–35. doi:10.1016/j.powtec.2011.06.024.

Foster, K. D., Bronlund, J. E., & Paterson, A. H. J. (Tony. (2006). Glass transition related cohesion of amorphous sugar powders. Journal of Food Engineering, 77(4), 997–1006. doi:10.1016/j.jfoodeng.2005.08.028.

Rahman, M. S. (2009). Food Properties Handbook. Food Properties Handbook (2nd ed.). CRC Press, Florida, United States. doi:10.1201/9781420003093.

Kuriakose, R., & Anandharamakrishnan, C. (2010). Computational fluid dynamics (CFD) applications in spray drying of food products. Trends in Food Science and Technology, 21(8), 383–398. doi:10.1016/j.tifs.2010.04.009.

Vehring, R., Foss, W. R., & Lechuga-Ballesteros, D. (2007). Particle formation in spray drying. Journal of Aerosol Science, 38(7), 728–746. doi:10.1016/j.jaerosci.2007.04.005.

Law, C. K. (1982). Recent advances in droplet vaporization and combustion. Progress in Energy and Combustion Science, 8(3), 171–201. doi:10.1016/0360-1285(82)90011-9.

Huang, D. (2011). Modeling of Particle Formation during Spray Drying. European Drying Conference - EuroDrying’2011, October, 26–28.

Fuchs, M., Turchiuli, C., Bohin, M., Cuvelier, M. E., Ordonnaud, C., Peyrat-Maillard, M. N., & Dumoulin, E. (2006). Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. Journal of Food Engineering, 75(1), 27–35. doi:10.1016/j.jfoodeng.2005.03.047.

Miller, R. S., Harstad, K., & Bellan, J. (1998). Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations. International Journal of Multiphase Flow, 24(6), 1025–1055. doi:10.1016/S0301-9322(98)00028-7.

Gao, X., Chen, J., Feng, J., & Peng, X. (2014). Numerical investigation of the effects of the central channel on the flow field in an oil-gas cyclone separator. Computers and Fluids, 92, 45–55. doi:10.1016/j.compfluid.2013.11.001.

Jamil Ur Rahman, U., Krzysztof Pozarlik, A., Tourneur, T., de Broqueville, A., De Wilde, J., & Brem, G. (2021). Numerical study toward optimization of spray drying in a novel radial multizone dryer. Energies, 14(5), 1233. doi:10.3390/en14051233.

Mokhatab, S., Poe, W. A., & Mak, J. Y. (2006). Phase Separation. Handbook of Natural Gas Transmission and Processing, 197–246. doi:10.1016/b978-075067776-9/50010-5.

Chen, J., Jiang, Z. A., & Chen, J. (2018). Effect of Inlet Air Volumetric Flow Rate on the Performance of a Two-Stage Cyclone Separator. ACS Omega, 3(10), 13219–13226. doi:10.1021/acsomega.8b02043.

Wasilewski, M., Singh Brar, L., & Ligus, G. (2021). Effect of the central rod dimensions on the performance of cyclone separators - optimization study. Separation and Purification Technology, 274, 119020. doi:10.1016/j.seppur.2021.119020.

Darling, P. (1996). Dust collection systems. Rock Products, Volume 99, Butterworth-Heinemann, Oxford, United Kingdom. doi:10.1016/b978-075067328-0/50049-5.

Tan, S. P., Kha, T. C., Parks, S. E., Stathopoulos, C. E., & Roach, P. D. (2015). Effects of the spray-drying temperatures on the physiochemical properties of an encapsulated bitter melon aqueous extract powder. Powder Technology, 281, 65–75. doi:10.1016/j.powtec.2015.04.074.

Bicudo, M. O. P., Jó, J., Oliveira, G. A. de, Chaimsohn, F. P., Sierakowski, M. R., Freitas, R. A. de, & Ribani, R. H. (2015). Microencapsulation of Juçara (Euterpe edulis M.) Pulp by Spray Drying Using Different Carriers and Drying Temperatures. Drying Technology, 33(2), 153–161. doi:10.1080/07373937.2014.937872.

Vardin, H., & Yasar, M. (2012). Optimisation of pomegranate (Punica granatum L.) juice spray-drying as affected by temperature and maltodextrin content. International Journal of Food Science and Technology, 47(1), 167–176. doi:10.1111/j.1365-2621.2011.02823.x.

Wang, H., Tong, X., Yuan, Y., Peng, X., Zhang, Q., Zhang, S., Xie, C., Zhang, X., Yan, S., Xu, J., Jiang, L., Qi, B., & Li, Y. (2020). Effect of Spray-Drying and Freeze-Drying on the Properties of Soybean Hydrolysates. Journal of Chemistry, 9201457. doi:10.1155/2020/9201457.

Daza, L. D., Fujita, A., Fávaro-Trindade, C. S., Rodrigues-Ract, J. N., Granato, D., & Genovese, M. I. (2016). Effect of spray drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC.) fruit extracts. Food and Bioproducts Processing, 97, 20–29. doi:10.1016/j.fbp.2015.10.001.

Tontul, I., & Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science and Technology, 63, 91–102. doi:10.1016/j.tifs.2017.03.009.

Grabowski, J. A., Truong, V. D., & Daubert, C. R. (2006). Spray-drying of amylase hydrolyzed sweet potato puree and physicochemical properties of powder. Journal of Food Science, 71(5), 209– 217. doi:10.1111/j.1750-3841.2006.00036.x.

Nurhadi, B., Andoyo, R., Mahani, & Indiarto, R. (2012). Study the properties of honey powder produced from spray drying and vacuum drying method. International Food Research Journal, 19(3), 907–912.

Ferrari, C. C., Germer, S. P. M., & de Aguirre, J. M. (2012). Effects of Spray-Drying Conditions on the Physicochemical Properties of Blackberry Powder. Drying Technology, 30(2), 154–163. doi:10.1080/07373937.2011.628429.

Nemzer, B., Vargas, L., Xia, X., Sintara, M., & Feng, H. (2018). Phytochemical and physical properties of blueberries, tart cherries, strawberries, and cranberries as affected by different drying methods. Food Chemistry, 262, 242–250. doi:10.1016/j.foodchem.2018.04.047.

Baysan, U., Elmas, F., & Koç, M. (2019). The effect of spray drying conditions on physicochemical properties of encapsulated propolis powder. Journal of Food Process Engineering, 42(4), 1–11. doi:10.1111/jfpe.13024.

Braga, M. B., Rocha, S. C. dos S., & Hubinger, M. D. (2018). Spray-Drying of Milk–Blackberry Pulp Mixture: Effect of Carrier Agent on the Physical Properties of Powder, Water Sorption, and Glass Transition Temperature. Journal of Food Science, 83(6), 1650–1659. doi:10.1111/1750-3841.14187.

Roos, Y. H. (2021). Glass transition and re-crystallization phenomena of frozen materials and their effect on frozen food quality. Foods, 10(2), 1–10. doi:10.3390/foods10020447.

Muzaffar, K. (2015). Stickiness Problem Associated with Spray Drying of Sugar and Acid Rich Foods: A Mini Review. Journal of Nutrition & Food Sciences, s12(003), 11–13. doi:10.4172/2155-9600.s12-003.

Barbosa, J., & Teixeira, P. (2017). Development of probiotic fruit juice powders by spray-drying: A review. Food Reviews International, 33(4), 335–358. doi:10.1080/87559129.2016.1175016.

Correia, R., Grace, M. H., Esposito, D., & Lila, M. A. (2017). Wild blueberry polyphenol-protein food ingredients produced by three drying methods: Comparative physico-chemical properties, phytochemical content, and stability during storage. Food Chemistry, 235, 76–85. doi:10.1016/j.foodchem.2017.05.042.

Saifullah, M., Yusof, Y. A., Chin, N. L., & Aziz, M. G. (2016). Physicochemical and flow properties of fruit powder and their effect on the dissolution of fast dissolving fruit powder tablets. Powder Technology, 301, 396–404. doi:10.1016/j.powtec.2016.06.035.

Iqbal, T., & Fitzpatrick, J. J. (2006). Effect of storage conditions on the wall friction characteristics of three food powders. Journal of Food Engineering, 72(3), 273–280. doi:10.1016/j.jfoodeng.2004.12.007.

Thi Anh Dao, D., Van Thanh, H., Viet Ha, D., & Duc Nguyen, V. (2021). Optimization of spray-drying process to manufacture green tea powder and its characters. Food Science and Nutrition, 9(12), 6566–6574. doi:10.1002/fsn3.2597.

Anandharamakrishnan, C., Rielly, C. D., & Stapley, A. G. F. (2007). Effects of process variables on the denaturation of whey proteins during spray drying. Drying Technology, 25(5), 799–807. doi:10.1080/07373930701370175.

Ezhilarasi, P. N., Indrani, D., Jena, B. S., & Anandharamakrishnan, C. (2014). Microencapsulation of Garcinia fruit extract by spray drying and its effect on bread quality. Journal of the Science of Food and Agriculture, 94(6), 1116–1123. doi:10.1002/jsfa.6378.

Sharifi, A., Niakousari, M., Maskooki, A., & Mortazavi, S. A. (2015). Effect of spray drying conditions on the physicochemical properties of barberry (Berberis vulgaris) extract powder. International Food Research Journal, 22(6), 2364–2370.

Ubbink, J. B. (2009). Structural Advances in the Understanding of Carbohydrate Glasses. Modern Biopolymer Science: Bridging the Divide between Fundamental Treatise and Industrial Application, 277–293. doi:10.1016/B978-0-12-374195-0.00009-4.

von Halling Laier, C., Sonne Alstrøm, T., Travers Bargholz, M., Bjerg Sjøltov, P., Rades, T., Boisen, A., & Nielsen, L. H. (2019). Evaluation of the effects of spray drying parameters for producing cubosome powder precursors. European Journal of Pharmaceutics and Biopharmaceutics, 135, 44–48. doi:10.1016/j.ejpb.2018.12.008.

Ahmed, M., Akter, M. S., Lee, J. C., & Eun, J. B. (2010). Encapsulation by spray drying of bioactive components, physicochemical and morphological properties from purple sweet potato. LWT - Food Science and Technology, 43(9), 1307–1312. doi:10.1016/j.lwt.2010.05.014.

Sasikumar, R., Vivek, K., & Jaiswal, A. K. (2021). Effect of spray drying conditions on the physical characteristics, amino acid profile, and bioactivity of blood fruit (Haematocarpus validus Bakh.F. Ex Forman) seed protein isolate. Journal of Food Processing and Preservation, 45(6), 1–14. doi:10.1111/jfpp.15568.

Drusch, S., & Berg, S. (2008). Extractable oil in microcapsules prepared by spray-drying: Localisation, determination and impact on oxidative stability. Food Chemistry, 109(1), 17–24. doi:10.1016/j.foodchem.2007.12.016.

Haque, M. A., & Adhikari, B. (2015). Drying and denaturation of proteins in spray drying process. Handbook of industrial drying, 33(10), 971-985.

Youssefi, S., Emam-Djomeh, Z., & Mousavi, S. M. (2009). Comparison of artificial neural network (ANN) and response surface methodology (RSM) in the prediction of quality parameters of spray-dried pomegranate juice. Drying Technology, 27(7), 910–917. doi:10.1080/07373930902988247.

Eisinaite, V., Duque Estrada, P., Schroën, K., Berton-Carabin, C., & Leskauskaite, D. (2018). Tayloring W/O/W emulsion composition for effective encapsulation: The role of PGPR in water transfer-induced swelling. Food Research International, 106, 722–728. doi:10.1016/j.foodres.2018.01.042.

Frascareli, E. C., Silva, V. M., Tonon, R. V., & Hubinger, M. D. (2012). Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food and Bioproducts Processing, 90(3), 413–424. doi:10.1016/j.fbp.2011.12.002.

Borrmann, D., Pierucci, A. P. T. R., Leite, S. G. F., & Leão, M. H. M. D. R. (2013). Microencapsulation of passion fruit (Passiflora) juice with n-octenylsuccinate-derivatised starch using spray-drying. Food and Bioproducts Processing, 91(1), 23–27. doi:10.1016/j.fbp.2012.08.001.

Estevinho, B. N., Rocha, F., Santos, L., & Alves, A. (2013). Microencapsulation with chitosan by spray drying for industry applications - A review. Trends in Food Science and Technology, 31(2), 138–155. doi:10.1016/j.tifs.2013.04.001.

Tao, Y., Chen, Y., Howard, W., Ibrahim, M., Patel, S. M., McMahon, W. P., Kim, Y. J., Delmar, J. A., & Davis, D. (2023). Mechanism of Insoluble Aggregate Formation in a Reconstituted Solution of Spray-Dried Protein Powder. Pharmaceutical Research, 40(10), 2355–2370. doi:10.1007/s11095-023-03524-x.

Donthi, M. R., Butreddy, A., Saha, R. N., Kesharwani, P., & Dubey, S. K. (2024). Leveraging spray drying technique for advancing biologic product development–A mini review. Health Sciences Review, 10, 100142. doi:10.1016/j.hsr.2023.100142.

Köprüalan Aydın, Ö., Baysan, U., Altay, Ö., İlter Baysan, I., Kaymak Ertekin, F., & Jafari, S. M. (2023). Vitamin delivery systems by spray-drying encapsulation within plant protein-based carriers: A review. Food Bioscience, 56, 103341. doi:10.1016/j.fbio.2023.103341.

Fritzen-Freire, C. B., Prudêncio, E. S., Amboni, R. D. M. C., Pinto, S. S., Negrão-Murakami, A. N., & Murakami, F. S. (2012). Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Research International, 45(1), 306–312. doi:10.1016/j.foodres.2011.09.020.

Medina-Torres, L., GarcÍa-Cruz, E. E., Calderas, F., González Laredo, R. F., Sánchez-Olivares, G., Gallegos-Infante, J. A., Rocha-Guzmán, N. E., & RodrÍguez-RamÍrez, J. (2013). Microencapsulation by spray drying of gallic acid with nopal mucilage (Opuntia ficus indica). LWT - Food Science and Technology, 50(2), 642–650. doi:10.1016/j.lwt.2012.07.038.

Gallardo, G., Guida, L., Martinez, V., López, M. C., Bernhardt, D., Blasco, R., Pedroza-Islas, R., & Hermida, L. G. (2013). Microencapsulation of linseed oil by spray drying for functional food application. Food Research International, 52(2), 473–482. doi:10.1016/j.foodres.2013.01.020.

Marques, G. R., Borges, S. V., Botrel, D. A., Costa, J. M. G. da, Silva, E. K., & Corrêa, J. L. G. (2014). Spray Drying of Green Corn Pulp. Drying Technology, 32(7), 861–868. doi:10.1080/07373937.2013.873452.

Shang, J., Hu, Z., Wang, P., Zhang, L., & Zhou, J. (2023). Effect of operating conditions on structure and digestibility of spray-dried corn starch. Food Research International, 174, 113511. doi:10.1016/j.foodres.2023.113511.

Shen, H., Yu, J., Bai, J., Liu, Y., Ge, X., Li, W., & Zheng, J. (2023). A new pre-gelatinized starch preparing by spray drying and electron beam irradiation of oat starch. Food Chemistry, 398, 133938. doi:10.1016/j.foodchem.2022.133938.

Koca, N., Erbay, Z., & Kaymak-Ertekin, F. (2015). Effects of spray-drying conditions on the chemical, physical, and sensory properties of cheese powder. Journal of Dairy Science, 98(5), 2934–2943. doi:10.3168/jds.2014-9111.

Zhao, Q., Xiong, H., Selomulya, C., Chen, X. D., Huang, S., Ruan, X., Zhou, Q., & Sun, W. (2013). Effects of Spray Drying and Freeze Drying on the Properties of Protein Isolate from Rice Dreg Protein. Food and Bioprocess Technology, 6(7), 1759–1769. doi:10.1007/s11947-012-0844-3.

Zhang, X., Li, Y., Li, J., Liang, H., Chen, Y., Li, B., Luo, X., Pei, Y., & Liu, S. (2022). Edible oil powders based on spray-dried Pickering emulsion stabilized by soy protein/cellulose nanofibrils. LWT - Food Science and Technology, 154, 112605. doi:10.1016/j.lwt.2021.112605.

Medina-Torres, L., Calderas, F., Nuñez Ramírez, D. M., Herrera-Valencia, E. E., Bernad Bernad, M. J., & Manero, O. (2017). Spray drying egg using either maltodextrin or nopal mucilage as stabilizer agents. Journal of Food Science and Technology, 54(13), 4427–4435. doi:10.1007/s13197-017-2919-7.

Furuta, T., & Neoh, T. L. (2021). Microencapsulation of food bioactive components by spray drying: A review. Drying Technology, 39(12), 1800–1831. doi:10.1080/07373937.2020.1862181.

Farouk, A., El-Kalyoubi, M., Ali, H., El Mageed, M. A., Khallaf, M., & Moawad, S. (2020). Effects of carriers on spray-dried flavors and their functional characteristics. Pakistan Journal of Biological Sciences, 23(3), 257–263. doi:10.3923/pjbs.2020.257.263.

Sarabandi, K., Peighambardoust, S. H., Sadeghi Mahoonak, A. R., & Samaei, S. P. (2018). Effect of different carriers on microstructure and physical characteristics of spray dried apple juice concentrate. Journal of Food Science and Technology, 55(8), 3098–3109. doi:10.1007/s13197-018-3235-6.

Ghalegi Ghalenoe, M., Dehnad, D., & Jafari, S. M. (2021). Physicochemical and nutritional properties of pomegranate juice powder produced by spray drying. Drying Technology, 39(12), 1941–1949. doi:10.1080/07373937.2021.1934691.

Khaire, R. A., & Gogate, P. R. (2021). Novel approaches based on ultrasound for spray drying of food and bioactive compounds. Drying Technology, 39(12), 1832–1853. doi:10.1080/07373937.2020.1804926.

Lee, H. M., Yang, S. Y., Han, J., Kim, Y. K., Kim, Y. J., Rhee, M. S., & Lee, K. W. (2019). Optimization of spray drying parameters and food additives to reduce glycation using response surface methodology in powdered infant formulas. Food Science and Biotechnology, 28(3), 769–777. doi:10.1007/s10068-018-0524-9.

Masum, A. K. M., Chandrapala, J., Huppertz, T., Adhikari, B., & Zisu, B. (2021). Production and characterization of infant milk formula powders: A review. Drying Technology, 39(11), 1492–1512. doi:10.1080/07373937.2020.1767645.

Ishwarya, S. P., & Anandharamakrishnan, C. (2015). Spray-Freeze-Drying approach for soluble coffee processing and its effect on quality characteristics. Journal of Food Engineering, 149, 171–180. doi:10.1016/j.jfoodeng.2014.10.011.

Rahim, M. A., Imran, M., Khan, M. K., Ahmad, M. H., & Ahmad, R. S. (2022). Impact of spray drying operating conditions on encapsulation efficiency, oxidative quality, and sensorial evaluation of chia and fish oil blends. Journal of Food Processing and Preservation, 46(2). doi:10.1111/jfpp.16248.

Sobulska, M., & Zbicinski, I. (2021). Advances in spray drying of sugar-rich products. Drying Technology, 39(12), 1774–1799. doi:10.1080/07373937.2020.1832513.

Guraya, H., Lima, I., & Champagne, E. (2010). Method of creating starch-like ultra-fine rice flour and effect of spray drying on formation of free fatty acid. Starch/Staerke, 62(3–4), 173–180. doi:10.1002/star.200900199.

Golshan Tafti, A., Peighambardoust, S. H., Behnam, F., Bahrami, A., Aghagholizadeh, R., Ghamari, M., & Abbas Rafat, S. (2013). Effects of spray-dried sourdough on flour characteristics and rheological properties of dough. Czech Journal of Food Sciences, 31(4), 361–367. doi:10.17221/183/2012-cjfs.

Teixeira, C. C. C., Teixeira, G. A., & Freitas, L. A. P. (2011). Spray drying of extracts from red yeast fermentation broth. Drying Technology, 29(3), 342–350. doi:10.1080/07373937.2010.497235.

Tomaro-Duchesneau, C., Saha, S., Malhotra, M., Kahouli, I., & Prakash, S. (2013). Microencapsulation for the Therapeutic Delivery of Drugs, Live Mammalian and Bacterial Cells, and Other Biopharmaceutics: Current Status and Future Directions. Journal of Pharmaceutics, 2013, 1–19. doi:10.1155/2013/103527.

Siwayanan, P., Aziz, R., Bakar, N. A., Ya, H., Jokiman, R., & Chelliapan, S. (2014). Detergency stability and particle characterization of phosphate-free spray dried detergent powders incorporated with palm C16 methyl ester sulfonate (C16MES). Journal of Oleo Science, 63(6), 585–592. doi:10.5650/jos.ess13200.

Souza, P. N. da C., Tavares, D. G., Souza, C. R. F., Martinez, M. L. L., Oliveira, W. P., Guimarães, L. H. S., & Cardoso, P. G. (2020). Spray drying of coloring extracts produced by fungi isolated from Brazilian Caves. Brazilian Archives of Biology and Technology, 63, 1–6. doi:10.1590/1678-4324-2020190024.

Pinto, J. T., Faulhammer, E., Dieplinger, J., Dekner, M., Makert, C., Nieder, M., & Paudel, A. (2021). Progress in spray-drying of protein pharmaceuticals: Literature analysis of trends in formulation and process attributes. Drying Technology, 39(11), 1415–1446. doi:10.1080/07373937.2021.1903032.

França, D., Medina, Â. F., Messa, L. L., Souza, C. F., & Faez, R. (2018). Chitosan spray-dried microcapsule and microsphere as fertilizer host for swellable - controlled release materials. Carbohydrate Polymers, 196, 47–55. doi:10.1016/j.carbpol.2018.05.014.

Ahsaei, S. M., Rodríguez-Rojo, S., Salgado, M., Cocero, M. J., Talebi-Jahromi, K., & Amoabediny, G. (2020). Insecticidal activity of spray dried microencapsulated essential oils of Rosmarinus officinalis and Zataria multiflora against Tribolium confusum. Crop Protection, 128, 104996. doi:10.1016/j.cropro.2019.104996.

Piñón-Balderrama, C. I., Leyva-Porras, C., Terán-Figueroa, Y., Espinosa-Solís, V., Álvarez-Salas, C., & Saavedra-Leos, M. Z. (2020). Encapsulation of active ingredients in food industry by spray-drying and nano spray-drying technologies. Processes, 8(8), 889. doi:10.3390/PR8080889.

Gawałek, J. (2021). Effect of spray dryer scale size on the properties of dried beetroot juice. Molecules, 26(21). doi:10.3390/molecules26216700.

Ghaemmaghamian, Z., Zarghami, R., Walker, G., O’Reilly, E., & Ziaee, A. (2022). Stabilizing vaccines via drying: Quality by design considerations. Advanced Drug Delivery Reviews, 187, 114313. doi:10.1016/j.addr.2022.114313.

Zivin, J. G., & Neidell, M. (2014). Temperature and the allocation of time: Implications for climate change. Journal of Labor Economics, 32(1), 1–26. doi:10.1086/671766.

Hernandez, B., Francia, V., Crosby, M., Ahmadian, H., Gupta, P., Martin De Juan, L., & Martin, M. (2021). The Use of Optimized Restitution Coefficients to Improve Residence Time Prediction in Computational Fluid Dynamics-Discrete Parcel Method Models for Counter-Current Spray Dryers. Industrial and Engineering Chemistry Research, 60(47), 17091–17109. doi:10.1021/acs.iecr.1c02415.

Nicol, K. (2013). Recent developments in particulate control. IEA Clean Coal Centre, Issue March, 1–54. Available online: https://usea.org/sites/default/files/032013_Recent developments in particulate control_ccc218.pdf (accessed on March 2023).

Stunda-Zujeva, A., Irbe, Z., & Berzina-Cimdina, L. (2017). Controlling the morphology of ceramic and composite powders obtained via spray drying – A review. Ceramics International, 43(15), 11543–11551. doi:10.1016/j.ceramint.2017.05.023.

Al-Khattawi, A., Bayly, A., Phillips, A., & Wilson, D. (2018). The design and scale-up of spray dried particle delivery systems. Expert Opinion on Drug Delivery, 15(1), 47–63. doi:10.1080/17425247.2017.1321634.

Arpagaus, C. (2012). A Novel Laboratory-Scale Spray Dryer to Produce Nanoparticles. Drying Technology, 30(10), 1113–1121. doi:10.1080/07373937.2012.686949.

Francia, V., Martín, L., Bayly, A. E., & Simmons, M. J. H. (2015). Deposition and wear of deposits in swirl spray driers: The equilibrium exchange rate and the wall - borne residence time. Procedia Engineering, 102, 831–840. doi:10.1016/j.proeng.2015.01.200.

Gema Switzerland GmbH (2014). New application system provides consistent powder output. IST International Surface Technology, 7(2), 20–21. doi:10.1365/s35724-014-0254-3.

Kumar, P., Kalaiarasan, G., Porter, A. E., Pinna, A., Kłosowski, M. M., Demokritou, P., Chung, K. F., Pain, C., Arvind, D. K., Arcucci, R., Adcock, I. M., & Dilliway, C. (2021). An overview of methods of fine and ultrafine particle collection for physicochemical characterisation and toxicity assessments. Science of the Total Environment, 756, 143553. doi:10.1016/j.scitotenv.2020.143553.

Pal, S., Gubeljak, N., Bončina, T., Hudák, R., Toth, T., Zivcak, J., Lojen, G., Leben, N., & Drstvenšek, I. (2021). The effects of locations on the build tray on the quality of specimens in powder bed additive manufacturing. International Journal of Advanced Manufacturing Technology, 112(3–4), 1159–1170. doi:10.1007/s00170-020-06563-5.

Masters, K., & Masters, S. G. (2006). Hygienic design requirements for spray drying operations. Drying Technology, 24(6), 685–693. doi:10.1080/07373930600684866.

Full Text: PDF

DOI: 10.28991/HEF-2024-05-02-09


  • There are currently no refbacks.

Copyright (c) 2024 Andri Cahyo Kumoro, Dyah Hesti Wardhani, Tutuk Djoko Kusworo, Mohammad Djaeni, Tan Chin Ping, Misbahudin Alhanif