Mangosteen Yield and Fruit Quality under Regulated Irrigation with Sensors and IoT

Krisanadej Jaroensutasinee, Mullica Jaroensutasinee, Piyatida Boonsanong, Elena Sparrow

Abstract


Mangosteen (Garcinia mangostana L.) generates over 88 billion USD in export revenue to Thailand annually but is restrained due to fruit defects. This study aimed to determine whether smart irrigation with sensors, IoT, and real-time data collection for regulating stable soil water content affects mangosteen fruit quantity and quality. Climate, soil, and mangosteen parameters were compared between irrigated and non-irrigated productions. Flowering and fruit yield data were collected from twenty randomly selected mangosteen trees per irrigation treatment. The results showed that air and soil temperatures were lower, but relative humidity and soil moisture on mangosteen production were greater in irrigated trees than in non-irrigated trees. Irrigated and non-irrigated mangosteen trees showed no significant difference in trunk diameter or crown size. Irrigation boosted mangosteen yields with increased flowers, fruits, and weight but thinner peels, fewer pulp segments, and a higher vulnerability to fruit imperfections. The mean fruit circumference did not differ significantly between non-irrigated and irrigated mangosteen production systems. Mangosteen fruits in irrigated production had fewer fruit defects than those in non-irrigated production. Regulated irrigated mangosteen production with stable soil moisture using soil moisture sensors and IoT produced high-quantity and quality mangosteens with fewer fruit defects.

 

Doi: 10.28991/HEF-2024-05-02-05

Full Text: PDF


Keywords


Irrigation; Fruit Quality; Mangosteen; Internet of Things (IoT).

References


Jain, R. K. (2023). Experimental performance of smart IoT-enabled drip irrigation system using and controlled through web-based applications. Smart Agricultural Technology, 4, 100215. doi:10.1016/j.atech.2023.100215.

Kumar S, V., Singh, C. D., Rao, K. V. R., Kumar, M., Rajwade, Y. A., Babu, B., & Singh, K. (2023). Evaluation of IoT based smart drip irrigation and ETC based system for sweet corn. Smart Agricultural Technology, 5, 100248. doi:10.1016/j.atech.2023.100248.

Delgoda, D., Malano, H., Saleem, S. K., & Halgamuge, M. N. (2016). Irrigation control based on model predictive control (MPC): Formulation of theory and validation using weather forecast data and AQUACROP model. Environmental Modelling and Software, 78, 40–53. doi:10.1016/j.envsoft.2015.12.012.

Soulis, K. X., & Elmaloglou, S. (2018). Optimum soil water content sensors placement for surface drip irrigation scheduling in layered soils. Computers and Electronics in Agriculture, 152, 1–8. doi:10.1016/j.compag.2018.06.052.

Gadissa, T., & Chemeda, D. (2009). Effects of drip irrigation levels and planting methods on yield and yield components of green pepper (Capsicum annuum, L.) in Bako, Ethiopia. Agricultural Water Management, 96(11), 1673–1678. doi:10.1016/j.agwat.2009.07.004.

Hassan, I. F., Gaballah, M. S., El-Hoseiny, H. M., El-Sharnouby, M. E., & Alam-Eldein, S. M. (2021). Deficit irrigation to enhance fruit quality of the ‘African Rose’ plum under the Egyptian semi-arid conditions. Agronomy, 11(7), 1405. doi:10.3390/agronomy11071405.

Chen, F., Cui, N., Jiang, S., Li, H., Wang, Y., Gong, D., Hu, X., Zhao, L., Liu, C., & Qiu, R. (2022). Effects of water deficit at different growth stages under drip irrigation on fruit quality of citrus in the humid areas of South China. Agricultural Water Management, 262, 107407. doi:10.1016/j.agwat.2021.107407.

Hajian, G., Ghasemnezhad, M., Fotouhi Ghazvini, R., & Khaledian, M. R. (2020). Effects of regulated deficit irrigation on vegetative growth, fruit yield and quality of Japanese plum (Prunus salicina Lindell ’Methly’). Agriculture Conspectus Scientificus, 85(1), 61–70.

Sun, G., Hu, T., Liu, X., Peng, Y., Leng, X., Li, Y., & Yang, Q. (2022). Optimizing irrigation and fertilization at various growth stages to improve mango yield, fruit quality and water-fertilizer use efficiency in xerothermic regions. Agricultural Water Management, 260, 107296. doi:10.1016/j.agwat.2021.107296.

Gucci, R., Caruso, G., Gennai, C., Esposto, S., Urbani, S., & Servili, M. (2019). Fruit growth, yield and oil quality changes induced by deficit irrigation at different stages of olive fruit development. Agricultural Water Management, 212, 88–98. doi:10.1016/j.agwat.2018.08.022.

Canatário Duarte, A., Veloso, A., Ramos, A., Ferreira, D., & Simões, M. P. (2020). Deficit Irrigation in Peach Orchards under Water Scarcity Conditions. KnE Engineering, 7, 716–727. doi:10.18502/keg.v5i6.7092.

Kabir, M. Y., Nambeesan, S. U., Bautista, J., & Díaz-Pérez, J. C. (2021). Effect of irrigation level on plant growth, physiology and fruit yield and quality in bell pepper (Capsicum annuum L.). Scientia Horticulture, 281, 109902. doi:10.1016/j.scienta.2021.109902.

Yao, Z., Hou, X., Wang, Y., & Du, T. (2023). Regulation of tomato yield and fruit quality by alternate partial root-zone irrigation strongly depends on truss positions. Agricultural Water Management, 282, 108288. doi:10.1016/j.agwat.2023.108288.

Kasikorn Research (2021). Thai mangosteen exports to grow 14.6-18.8 percent in 2021...despite short-term supply disruption. Agriculture, 3259. Available online: https://www.kasikornresearch.com/en/analysis/k-econ/business/Pages/mangosteen-z3259.aspx (accessed on March 2024).

Jarimopas, B., Pushpariksha, P., & Singh, S. P. (2009). Postharvest damage of mangosteen and quality grading using mechanical and optical properties as indicators. International Journal of Food Properties, 12(2), 414–426. doi:10.1080/10942910701837262.

Sayekti, A. L., Hayati, N. Q., Sulistyaningrum, A., Sjafrina, N., Mulyono, D., Anwarudinsyah, M. J., Hafizah, D., & Prabawati, S. (2023). The policy impacts and implications from the insights of mangosteen export chains. IOP Conference Series: Earth and Environmental Science, 1153(1), 12014. doi:10.1088/1755-1315/1153/1/012014.

Pechkeo, S., Nilnond, C., & Sdoodee, S. (2013). Feasibility study to alleviate the translucent flesh and gamboge disorders of mangosteen (Garcinia mangostana L.) by spraying with calcium chloride. Acta Horticulture, 975, 441–448. doi:10.17660/actahortic.2013.975.57.

Sdoodee, S., & Limpun-Udom, S. (2002). Effect of excess water on the incidence of translucent flesh disorder in mangosteen (Garcinia mangostana L.). Acta Horticulturae, 575, 813–820. doi:10.17660/ActaHortic.2002.575.96.

Lobet, G., Couvreur, V., Meunier, F., Javaux, M., & Draye, X. (2014). Plant water uptake in drying soils. Plant Physiology, 164(4), 1619–1627. doi:10.1104/pp.113.233486.

Poerwanto, R., Efendi, D., Sobir, & Suhartanto, R. (2008). Improving productivity and quality of Indonesian mangosteen. Acta Horticulturae, 769, 285–288. doi:10.17660/ActaHortic.2008.769.41.

Bin Osman, M., & Milan, A. R. (2006). Mangosteen-Garcinia mangostana L. Southampton Centre for Underutilized Crops, University of Southampton, Southampton, England.

Jaroensutasinee, K., Jaroensutasinee, M., & Boonsanong, P. (2023). Climatic Factor Differences and Mangosteen Fruit Quality between On-and Off-Season Productions. Emerging Science Journal, 7(2), 578–588. doi:10.28991/ESJ-2023-07-02-020.

Setiawan, E., Poerwanto, R., Fukuda, F., & Kubota, N. (2012). Meteorological Conditions of Mangosteen Orchard in West Java, Indonesia and Seasonal Changes in C-N Ratio of Their Leaves as Affected by Sector (Position in Canopy) and Tree Age. Science Report of the Faculty of Agriculture, Okayama University, 101, 39–47.

Yaacob, O., & Tindall, H. D. (1995). Mangosteen Cultivation. FAO Plant Protection Paper 129. Food and Agriculture Organization of the United Nations, Rome, Italy. doi:10.5962/bhl.title.121365.

Nakasone, H. Y., & Paull, R. E. (1998). Durian. In Tropical Fruit, H. Y. Nakasone, and R. E. Paull, eds. Wallingford, UK: CAB International, 341–351.

Prates, A. R., Züge, P. G. U., Leonel, S., Souza, J. M. A., & de Ávila, J. (2021). Flowering induction in mango tree: Updates, perspectives and options for organic agriculture. Pesquisa Agropecuaria Tropical, 51, 68175. doi:10.1590/1983-40632021v5168175.

Ganeshamurthy, A. N., & Reddy, Y. T. N. (2015). Fitness of Mango for Colonization in Low Fertility Soils and Dry Lands: Examination of Leaf Life-Span, Leaf Nutrient Resorption, and Nutrient Use Efficiency in Elite Mango Varieties. Agricultural Research, 4(3), 254–260. doi:10.1007/s40003-015-0164-8.

Naor, A. (2001). Irrigation and crop load influence fruit size and water relations in field-grown “Spadona” pear. Journal of the American Society for Horticultural Science, 126(2), 252–255. doi:10.21273/jashs.126.2.252.

Nerd, A., & Nobel, P. S. (2000). Water relations during ripening for fruit of well-watered versus water-stressed Opuntia ficus-indica. Journal of the American Society for Horticultural Science, 125(5), 653–657. doi:10.21273/jashs.125.5.653.

Chowdhury, S., Bolan, N., Farrell, M., Sarkar, B., Sarker, J. R., Kirkham, M. B., Hossain, M. Z., & Kim, G. H. (2021). Role of cultural and nutrient management practices in carbon sequestration in agricultural soil. Advances in Agronomy, 166, 131–196. doi:10.1016/bs.agron.2020.10.001.

Ounlert, P., & Sdoodee, S. (2015). The Effects of Climatic Variability on Mangosteen Flowering Date in Southern and Eastern of Thailand. Research Journal of Applied Sciences, Engineering and Technology, 11(6), 617–622. doi:10.19026/rjaset.11.2021.

Núñez-Elisea, R., & Davenport, T. L. (1994). Flowering of mango trees in containers as influenced by seasonal temperature and water stress. Scientia Horticulturae, 58(1–2), 57–66. doi:10.1016/0304-4238(94)90127-9.

Koshita, Y., & Takahara, T. (2004). Effect of water stress on flower-bud formation and plant hormone content of satsuma mandarin (Citrus unshiu Marc.). Scientia Horticulturae, 99(3–4), 301–307. doi:10.1016/S0304-4238(03)00113-4.

Sritontip, C., Jaroenkit, T., Manochai, P., & Sangchyoswat, C. (2014). The impact of climate changes on yield of longan production in Northern Thailand. Acta Horticulturae, 1029, 155–162. doi:10.17660/ActaHortic.2014.1029.17.

Southwick, S. M., & Davenport, T. L. (1986). Characterization of Water Stress and Low Temperature Effects on Flower Induction in Citrus. Plant Physiology, 81(1), 26–29. doi:10.1104/pp.81.1.26.

Fernández, M. D., Hueso, J. J., & Cuevas, J. (2010). Water stress integral for successful modification of flowering dates in “Algerie” loquat. Irrigation Science, 28(2), 127–134. doi:10.1007/s00271-009-0165-0.

Boonklong, O., Jaroensutasinee, M., & Jaroensutasinee, K. (2006). Climate Change Affecting Mangosteen Production in Thailand. Proceedings of the 5th WSEAS International Conference on Environment, Ecosystems and Development, 1, 325–332.

WU, P., WU, C., & ZHOU, B. (2017). Drought Stress Induces Flowering and Enhances Carbohydrate Accumulation in Averrhoa carambola. Horticultural Plant Journal, 3(2), 60–66. doi:10.1016/j.hpj.2017.07.008.

Sdoodee, S., & Chiarawipa, R. (2005). Regulating irrigation during pre-harvest to avoid the incidence of translucent flesh disorder and gamboge disorder of mangosteen fruits. Songklanakarin Journal of Science and Technology, 27(5), 957-965.

Wang, Z., & Stutte, G. W. (2019). The Role of Carbohydrates in Active Osmotic Adjustment in Apple under Water Stress. Journal of the American Society for Horticultural Science, 117(5), 816–823. doi:10.21273/jashs.117.5.816.

Yang, H. F., Kim, H. J., Chen, H. Bin, Rahman, J., Lu, X. Y., & Zhou, B. Y. (2014). Carbohydrate accumulation and flowering-related gene expression levels at different developmental stages of terminal shoots in Litchi chinensis. HortScience, 49(11), 1381–1391. doi:10.21273/hortsci.49.11.1381.

George, A. P., & Nissen, R. J. (2002). Effects of drought on fruit set, yield and quality of custard apple (Annona spp. hybrid) “African Pride” plants. Journal of Horticultural Science & Biotechnology, 77(4), 418–427. doi:10.1080/14620316.2002.11511515.

Li, C. X., Zhou, X. G., Sun, J. S., Wang, H. Z., & Gao, Y. (2014). Dynamics of root water uptake and water use efficiency under alternate partial root-zone irrigation. Desalination and Water Treatment, 52(13–15), 2805–2810. doi:10.1080/19443994.2013.822647.

Xie, K., Wang, X. X., Zhang, R., Gong, X., Zhang, S., Mares, V., Gavilán, C., Posadas, A., & Quiroz, R. (2012). Partial root-zone drying irrigation and water utilization efficiency by the potato crop in semi-arid regions in China. Scientia Horticulturae, 134, 20–25. doi:10.1016/j.scienta.2011.11.034.

Wang, Y., Liu, F., Andersen, M. N., & Jensen, C. R. (2010). Improved plant nitrogen nutrition contributes to higher water use efficiency in tomatoes under alternate partial root-zone irrigation. Functional Plant Biology, 37(2), 175–182. doi:10.1071/FP09181.

Van Hooijdonk, B. M., Dorji, K., & Behboudian, M. H. (2004). Responses of ‘Pacific Rose’ TM apple to partial root zone drying and to deficit irrigation. European Journal of Horticultural Science, 69(3), 104–110.

Egea, G., Dodd, I. C., González-Real, M. M., Domingo, R., & Baille, A. (2011). Partial rootzone drying improves almond tree leaf-level water use efficiency and afternoon water status compared with regulated deficit irrigation. Functional Plant Biology, 38(5), 372–385. doi:10.1071/FP10247.

Geiiy, M., Recasens, I., Girona, J., Mata, M., Arbones, A., Rufat, J., & Marsal, J. (2004). Effects of stage II and postharvest deficit irrigation on peach quality during maturation and after cold storage. Journal of the Science of Food and Agriculture, 84(6), 561–568. doi:10.1002/jsfa.1686.

Cui, N., Du, T., Kang, S., Li, F., Hu, X., Wang, M., & Li, Z. (2009). Relationship between stable carbon isotope discrimination and water use efficiency under regulated deficit irrigation of pear-jujube tree. Agricultural Water Management, 96(11), 1615–1622. doi:10.1016/j.agwat.2009.06.009.

Vijayakumar, K. R., Dey, S. K., Chandrasekhar, T. R., Devakumar, A. S., Mohankrishna, T., Sanjeeva Rao, P., & Sethuraj, M. R. (1998). Irrigation requirement of rubber trees (Hevea brasiliensis) in the subhumid tropics. Agricultural Water Management, 35(3), 245–259. doi:10.1016/S0378-3774(97)00019-X.

Phlompaat, N. (1989). Mangosteen for exporting. Thai Fruit Tree Assn., Bangkok, Thailand.

Wannasiri, S. (1990). Mangosteen. Rural Agricultural Center of Thailand, Bangkok, Thailand.

Pankasemsuk, T., Garner, J. O., Matta, F. B., & Silva, J. L. (1996). Translucent flesh disorder of mangosteen fruit (Garcinia mangostana L.). HortScience, 31(1), 112–113. doi:10.21273/hortsci.31.1.112.

Marlow, G., & W. Loescher. (1984). Watercore. Horticultural Reviews, 6, 189-251.

Sapii, A. T., & Nanthachai, S. (1994). Physiological disorders, Durian, fruit development, postharvest physiology, handling and marketing in ASEAN (5th ed). ASEAN Food Handling Bureau, Kuala Lumpur, Malaysia.

Teerachaichayut, S., Terdwongworakul, A., & Pathaveerat, S. (2008). Multiple parameters for prediction of translucent flesh in mangosteens. Agricultural Engineering International, CIGR Ejournal. Manuscript FP 08 007. Vol. X. December, 2008.

Wood, B. W., & Reilly, C. C. (1999). Factors influencing water split of pecan fruit. HortScience, 34(2), 215–217. doi:10.21273/hortsci.34.2.215.

Lane, W. D., Meheriuk, M., & McKenzie, D. L. (2000). Fruit cracking of a susceptible, an intermediate, and a resistant sweet cherry cultivar. HortScience, 35(2), 239–242. doi:10.21273/hortsci.35.2.239.

Peet, M. M., & Willits, D. H. (1995). Role of excess water in tomato fruit cracking. HortScience, 30(1), 65–68. doi:10.21273/hortsci.30.1.65.

Fauziana, D. R., Suwarsinah, H. K., & Prasetio, E. A. (2023). What factors impact the adoption of postharvest loss-reduction technologies in mangosteen supply chain? Journal of Open Innovation: Technology, Market, and Complexity, 9(3), 100102. doi:10.1016/j.joitmc.2023.100102.

Pankeaw, K., Ngampongsai, A., Permkam, S., & Rukadee, O. (2011). Abundance and distribution of thrips (Thysanoptera: Thripidae) in mangosteen (Garcinia mangostana L.) grown in single- and mixed-cropping systems. Songklanakarin Journal of Science and Technology, 33(3), 263–269.

Emilda, D. (2010). Effect of mulching, sanitation and yellow fluorescent sticky trap application on population fluctuation and critical attack period of thrip on mangosteen. AGRIVITA Journal of Agricultural Science, 32(3), 277-284.

Pearsall, I. A., & Myers, J. H. (2000). Population dynamics of western flower thrips (Thysanoptera: Thripidae) in nectarine orchards in British Columbia. Journal of Economic Entomology, 93(2), 264-275. doi:10.1603/0022-0493-93.2.264.


Full Text: PDF

DOI: 10.28991/HEF-2024-05-02-05

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Krisanadej Jaroensutasinee, Mullica Jaroensutasinee, Piyatida Boonsanong, Elena Sparrow