Influence of Pyrolysis Temperature and Time on Biochar Properties and Its Potential for Climate Change Mitigation

Saowanee Wijitkosum

Abstract


The thermochemical conversion of disposable bamboo chopstick (DBC) wastes into biochar is a practical strategy for converting waste into resources. This study aimed to investigate the effects of pyrolysis temperature and holding time on the physicochemical properties of DBC biochar and its potential for climate change mitigation. Properties affecting the biochar efficiency and potential for application were analyzed: moisture content (MC), volatile matter (VM), fixed carbon (FC), ash, pH, and carbon (C), hydrogen (H), nitrogen (N), and oxygen (O) content. Six different pyrolysis conditions were studied, with temperatures of 400 °C, 450 °C, and 500 °C and holding times of 20 and 60 min, at a constant heating rate. The results demonstrated that temperature and holding time significantly affected the physicochemical properties and performance of the biochar. Increases in %C, %FC, %N, and pH and reductions in %MC, %VM, %H, and %O were found when the temperature was increased at different holding times. The aromaticity increased and the polarity decreased significantly with increasing temperature and holding time. The results showed that temperature interacts significantly with holding time, and these two factors jointly affect the contents of MC, ash, FC, C, H, N, and O (R2 of 0.997) and pH (R2of 0.999). The DBC biochar obtained via pyrolysis at 450 °C and 500 °C for 20 and 60 min could be applied for climate change mitigation. The best DBC biochar was obtained at a pyrolysis temperature of 500 °C and a holding time of 20 min. This biochar showed good hydrophobicity, tremendous stability, the highest C (88.06%) and FC (76.49%) values, and the lowest ash (2.62%) and VM (19.23%) contents.

 

Doi: 10.28991/HEF-2023-04-04-07

Full Text: PDF


Keywords


Pyrolysis Conditions; Biochar; Wooden Biomass; Climate Change Mitigation; Carbonization.

References


Lyu, H., Zhang, H., Chu, M., Zhang, C., Tang, J., Chang, S. X., Mašek, O., & Ok, Y. S. (2022). Biochar affects greenhouse gas emissions in various environments: A critical review. Land Degradation & Development, 33(17), 3327–3342. doi:10.1002/ldr.4405.

Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, 28, 570. doi:10.1016/j.btre.2020.e00570.

Huang, H., Reddy, N. G., Huang, X., Chen, P., Wang, P., Zhang, Y., Huang, Y., Lin, P., & Garg, A. (2021). Effects of pyrolysis temperature, feedstock type and compaction on water retention of biochar amended soil. Scientific Reports, 11(1), 7419. doi:10.1038/s41598-021-86701-5.

Fernandes, B. C. C., Mendes, K. F., Júnior, A. F. D., Caldeira, V. P. da S., Teófilo, T. M. da S., Silva, T. S., Mendonça, V., de Freitas Souza, M., & Silva, D. V. (2020). Impact of pyrolysis temperature on the properties of eucalyptus wood-derived biochar. Materials, 13(24), 1–13. doi:10.3390/ma13245841.

Tag, A. T., Duman, G., Ucar, S., & Yanik, J. (2016). Effects of feedstock type and pyrolysis temperature on potential applications of biochar. Journal of Analytical and Applied Pyrolysis, 120, 200–206. doi:10.1016/j.jaap.2016.05.006.

Shakoor, A., Arif, M. S., Shahzad, S. M., Farooq, T. H., Ashraf, F., Altaf, M. M., Ahmed, W., Tufail, M. A., & Ashraf, M. (2021). Does biochar accelerate the mitigation of greenhouse gaseous emissions from agricultural soil? - A global meta-analysis. Environmental Research, 202, 111789. doi:10.1016/j.envres.2021.111789.

Ji, M., Zhou, L., Zhang, S., Luo, G., & Sang, W. (2020). Effects of biochar on methane emission from paddy soil: Focusing on DOM and microbial communities. Science of the Total Environment, 743, 140725. doi:10.1016/j.scitotenv.2020.140725.

Cayuela, M. L., van Zwieten, L., Singh, B. P., Jeffery, S., Roig, A., & Sánchez-Monedero, M. A. (2014). Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agriculture, Ecosystems & Environment, 191, 5–16. doi:10.1016/j.agee.2013.10.009.

Wang, W., Bai, J., Lu, Q., Zhang, G., Wang, D., Jia, J., Guan, Y., & Yu, L. (2021). Pyrolysis temperature and feedstock alter the functional groups and carbon sequestration potential of Phragmites australis- and Spartina alterniflora-derived biochars. GCB Bioenergy, 13(3), 493–506. doi:10.1111/gcbb.12795.

Liu, W. J., Jiang, H., & Yu, H. Q. (2015). Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. Chemical Reviews, 115(22), 12251–12285. doi:10.1021/acs.chemrev.5b00195.

Schmidt, H. P., Kammann, C., Hagemann, N., Leifeld, J., Bucheli, T. D., Sánchez Monedero, M. A., & Cayuela, M. L. (2021). Biochar in agriculture – A systematic review of 26 global meta-analyses. GCB Bioenergy, 13(11), 1708–1730. doi:10.1111/gcbb.12889.

Shaaban, M., Van Zwieten, L., Bashir, S., Younas, A., Núñez-Delgado, A., Chhajro, M. A., Kubar, K. A., Ali, U., Rana, M. S., Mehmood, M. A., & Hu, R. (2018). A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. Journal of Environmental Management, 228, 429–440. doi:10.1016/j.jenvman.2018.09.006.

Yang, H., Cui, Y., Jin, Y., Lu, X., Han, T., Sandström, L., Jönsson, P. G., & Yang, W. (2023). Evaluation of Engineered Biochar-Based Catalysts for Syngas Production in a Biomass Pyrolysis and Catalytic Reforming Process. Energy and Fuels, 37(8), 5942–5952. doi:10.1021/acs.energyfuels.3c00410.

Chatterjee, R., Sajjadi, B., Chen, W. Y., Mattern, D. L., Hammer, N., Raman, V., & Dorris, A. (2020). Effect of Pyrolysis Temperature on Physicochemical Properties and Acoustic-Based Amination of Biochar for Efficient CO2 Adsorption. Frontiers in Energy Research, 8. doi:10.3389/fenrg.2020.00085.

Anupam, K., Sharma, A. K., Lal, P. S., Dutta, S., & Maity, S. (2016). Preparation, characterization and optimization for upgrading Leucaena leucocephala bark to biochar fuel with high energy yielding. Energy, 106, 743–756. doi:10.1016/j.energy.2016.03.100.

Joseph, S., Cowie, A. L., Van Zwieten, L., Bolan, N., Budai, A., Buss, W., Cayuela, M. L., Graber, E. R., Ippolito, J. A., Kuzyakov, Y., Luo, Y., Ok, Y. S., Palansooriya, K. N., Shepherd, J., Stephens, S., Weng, Z., & Lehmann, J. (2021). How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy, 13(11), 1731–1764. doi:10.1111/gcbb.12885.

Al-Wabel, M. I., Hussain, Q., Usman, A. R. A., Ahmad, M., Abduljabbar, A., Sallam, A. S., & Ok, Y. S. (2018). Impact of biochar properties on soil conditions and agricultural sustainability: A review. Land Degradation & Development, 29(7), 2124–2161. doi:10.1002/ldr.2829.

Qian, K., Kumar, A., Zhang, H., Bellmer, D., & Huhnke, R. (2015). Recent advances in utilization of biochar. Renewable and Sustainable Energy Reviews, 42, 1055–1064. doi:10.1016/j.rser.2014.10.074.

Li, L., Long, A., Fossum, B., & Kaiser, M. (2023). Effects of pyrolysis temperature and feedstock type on biochar characteristics pertinent to soil carbon and soil health: A meta-analysis. Soil Use and Management, 39(1), 43–52. doi:10.1111/sum.12848.

Leng, L., Huang, H., Li, H., Li, J., & Zhou, W. (2019). Biochar stability assessment methods: A review. Science of the Total Environment, 647, 210–222. doi:10.1016/j.scitotenv.2018.07.402.

Tan, H., Lee, C. T., Ong, P. Y., Wong, K. Y., Bong, C. P. C., Li, C., & Gao, Y. (2021). A Review on the Comparison between Slow Pyrolysis and Fast Pyrolysis on the Quality of Lignocellulosic and Lignin-Based Biochar. IOP Conference Series: Materials Science and Engineering, 1051(1), 012075. doi:10.1088/1757-899x/1051/1/012075.

Chia, C. H., Downie, A., & Munroe, P. (2019). Characteristics of biochar: physical and structural properties. Biochar for Environmental Management, 121–142. doi:10.4324/9780203762264-12.

Zhang, H., Voroney, R. P., & Price, G. W. (2015). Effects of temperature and processing conditions on biochar chemical properties and their influence on soil C and N transformations. Soil Biology and Biochemistry, 83, 19–28. doi:10.1016/j.soilbio.2015.01.006.

Gezahegn, S., Sain, M., & Thomas, S. C. (2019). Variation in feedstock wood chemistry strongly influences biochar liming potential. Soil Systems, 3(2), 1–16. doi:10.3390/soilsystems3020026.

Wiedemeier, D. B., Abiven, S., Hockaday, W. C., Keiluweit, M., Kleber, M., Masiello, C. A., McBeath, A. V., Nico, P. S., Pyle, L. A., Schneider, M. P. W., Smernik, R. J., Wiesenberg, G. L. B., & Schmidt, M. W. I. (2015). Aromaticity and degree of aromatic condensation of char. Organic Geochemistry, 78, 135–143. doi:10.1016/j.orggeochem.2014.10.002.

Ronsse, F., van Hecke, S., Dickinson, D., & Prins, W. (2013). Production and characterization of slow pyrolysis biochar: Influence of feedstock type and pyrolysis conditions. GCB Bioenergy, 5(2), 104–115. doi:10.1111/gcbb.12018.

Zhang, Y., Ma, Z., Zhang, Q., Wang, J., Ma, Q., Yang, Y., Luo, X., & Zhang, W. (2017). Comparison of the physicochemical characteristics of bio-char pyrolyzed from moso bamboo and rice husk with different pyrolysis temperatures. BioResources, 12(3), 4652–4669. doi:10.15376/biores.12.3.4652-4669.

Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M. H., & Soja, G. (2012). Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties. Journal of Environmental Quality, 41(4), 990–1000. doi:10.2134/jeq2011.0070.

Huff, M. D., Kumar, S., & Lee, J. W. (2014). Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis. Journal of Environmental Management, 146, 303–308. doi:10.1016/j.jenvman.2014.07.016.

Askeland, M., Clarke, B., & Paz-Ferreiro, J. (2019). Comparative characterization of biochars produced at three selected pyrolysis temperatures from common woody and herbaceous waste streams. PeerJ, 7, 6784. doi:10.7717/peerj.6784.

Trigo, C., Cox, L., & Spokas, K. (2016). Influence of pyrolysis temperature and hardwood species on resulting biochar properties and their effect on azimsulfuron sorption as compared to other sorbents. Science of the Total Environment, 566–567, 1454–1464. doi:10.1016/j.scitotenv.2016.06.027.

Pariyar, P., Kumari, K., Jain, M. K., & Jadhao, P. S. (2020). Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Science of the Total Environment, 713, 136433. doi:10.1016/j.scitotenv.2019.136433.

Zhang, P., Li, Y., Cao, Y., & Han, L. (2019). Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures. Bioresource Technology, 285, 121348. doi:10.1016/j.biortech.2019.121348.

Tsai, W. T., Liu, S. C., Chen, H. R., Chang, Y. M., & Tsai, Y. L. (2012). Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere, 89(2), 198–203. doi:10.1016/j.chemosphere.2012.05.085.

Jamal, M. U., & Fletcher, A. J. (2023). Design of Experiments Study on Scottish Wood Biochars and Process Parameter Influence on Final Biochar Characteristics. BioEnergy Research, 16(4), 2342–2355. doi:10.1007/s12155-023-10595-6.

Palacios-Hugo, R., Calle-Maravi, J., Césare-Coral, M. F., Iparraguirre, J., & Virú-Vásquez, P. (2023). Physicochemical Characterization and Stability of Biochar Obtained from 5 Species of Forest Biomass in Peru. Environmental Research, Engineering and Management, 79(3), 35–51. doi:10.5755/j01.erem.79.3.33084.

Ippolito, J. A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., Fuertes-Mendizabal, T., Cayuela, M. L., Sigua, G., Novak, J., Spokas, K., & Borchard, N. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar, 2(4), 421–438. doi:10.1007/s42773-020-00067-x.

Wang, K., Peng, N., Lu, G., & Dang, Z. (2020). Effects of Pyrolysis Temperature and Holding Time on Physicochemical Properties of Swine-Manure-Derived Biochar. Waste and Biomass Valorization, 11(2), 613–624. doi:10.1007/s12649-018-0435-2.

Guizani, C., Jeguirim, M., Valin, S., Peyrot, M., & Salvador, S. (2019). The Heat Treatment Severity Index: A new metric correlated to the properties of biochars obtained from entrained flow pyrolysis of biomass. Fuel, 244, 61–68. doi:10.1016/j.fuel.2019.01.170.

Weber, K., & Quicker, P. (2018). Properties of Biochar. Fuel, 217, 240–261. doi:10.1016/j.fuel.2017.12.054.

Yang, X., Wang, H., Strong, P. J., Xu, S., Liu, S., Lu, K., Sheng, K., Guo, J., Che, L., He, L., Ok, Y. S., Yuan, G., Shen, Y., & Chen, X. (2017). Thermal properties of biochars derived from Waste biomass generated by agricultural and forestry sectors. Energies, 10(4), 469. doi:10.3390/en10040469.

Xu, Z., He, M., Xu, X., Cao, X., & Tsang, D. C. W. (2021). Impacts of different activation processes on the carbon stability of biochar for oxidation resistance. Bioresource Technology, 338, 125555. doi:10.1016/j.biortech.2021.125555.

Mohd Hasan, M. H., Bachmann, R. T., Loh, S. K., Manroshan, S., & Ong, S. K. (2019). Effect of Pyrolysis Temperature and Time on Properties of Palm Kernel Shell-Based Biochar. IOP Conference Series: Materials Science and Engineering, 548(1), 12020. doi:10.1088/1757-899X/548/1/012020.

Ahmad, M., Ahmad, M., Usman, A. R. A., Al-Faraj, A. S., Abduljabbar, A., Ok, Y. S., & Al-Wabel, M. I. (2019). Date palm waste-derived biochar composites with silica and zeolite: synthesis, characterization and implication for carbon stability and recalcitrant potential. Environmental Geochemistry and Health, 41(4), 1687–1704. doi:10.1007/s10653-017-9947-0.

Cheng, J., Hu, S. C., Kang, K., Li, X. M., Geng, Z. C., & Zhu, M. Q. (2021). The effects of pyrolysis temperature and storage time on the compositions and properties of the pyroligneous acids generated from cotton stalk based on a polygeneration process. Industrial Crops and Products, 161, 113226. doi:10.1016/j.indcrop.2020.113226.

Hernandez-Mena, L. E., Pecora, A. A. B., & Beraldo, A. L. (2014). Slow pyrolysis of bamboo biomass: Analysis of biochar properties. Chemical Engineering Transactions, 37, 115–120. doi:10.3303/CET1437020.

Zhang, X., Zhang, P., Yuan, X., Li, Y., & Han, L. (2020). Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar. Bioresource Technology, 296, 122318. doi:10.1016/j.biortech.2019.122318.

Dhyani, V., & Bhaskar, T. (2018). A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy, 129, 695–716. doi:10.1016/j.renene.2017.04.035.

Wijitkosum, S., & Sriburi, T. (2023). Aromaticity, polarity, and longevity of biochar derived from disposable bamboo chopsticks waste for environmental application. Heliyon, 9(9). doi:10.1016/j.heliyon.2023.e19831.

Das, S. K., Ghosh, G. K., Avasthe, R. K., & Sinha, K. (2021). Compositional heterogeneity of different biochar: Effect of pyrolysis temperature and feedstocks. Journal of Environmental Management, 278, 111501. doi:10.1016/j.jenvman.2020.111501.

Rafiq, M. K., Bachmann, R. T., Rafiq, M. T., Shang, Z., Joseph, S., & Long, R. L. (2016). Influence of pyrolysis temperature on physico-chemical properties of corn stover (Zea Mays l.) biochar and feasibility for carbon capture and energy balance. PLoS ONE, 11(6), 156894. doi:10.1371/journal.pone.0156894.

Wijitkosum, S. (2022). Biochar derived from agricultural wastes and wood residues for sustainable agricultural and environmental applications. International Soil and Water Conservation Research, 10(2), 335–341. doi:10.1016/j.iswcr.2021.09.006.

Arous, S., Koubaa, A., Bouafif, H., Bouslimi, B., Braghiroli, F. L., & Bradai, C. (2021). Effect of pyrolysis temperature and wood species on the properties of biochar pellets. Energies, 14(20), 6529. doi:10.3390/en14206529.

Kalina, M., Sovova, S., Svec, J., Trudicova, M., Hajzler, J., Kubikova, L., & Enev, V. (2022). The Effect of Pyrolysis Temperature and the Source Biomass on the Properties of Biochar Produced for the Agronomical Applications as the Soil Conditioner. Materials, 15(24), 8855. doi:10.3390/ma15248855.

Boraah, N., Chakma, S., & Kaushal, P. (2023). Optimum features of wood-based biochars: A characterization study. Journal of Environmental Chemical Engineering, 11(3), 109976. doi:10.1016/j.jece.2023.109976.

Song, S., Cong, P., Wang, C., Li, P., Liu, S., He, Z., Zhou, C., Liu, Y., & Yang, Z. (2023). Properties of Biochar Obtained from Tropical Crop Wastes Under Different Pyrolysis Temperatures and Its Application on Acidic Soil. Agronomy, 13(3), 921. doi:10.3390/agronomy13030921.

Tu, P., Zhang, G., Wei, G., Li, J., Li, Y., Deng, L., & Yuan, H. (2022). Influence of pyrolysis temperature on the physicochemical properties of biochars obtained from herbaceous and woody plants. Bioresources and Bioprocessing, 9(1), 131. doi:10.1186/s40643-022-00618-z.

Shakya, A., Vithanage, M., & Agarwal, T. (2022). Influence of pyrolysis temperature on biochar properties and Cr(VI) adsorption from water with groundnut shell biochars: Mechanistic approach. Environmental Research, 215, 114243. doi:10.1016/j.envres.2022.114243.

Sbizzaro, M., César Sampaio, S., Rinaldo dos Reis, R., de Assis Beraldi, F., Medina Rosa, D., Maria Branco de Freitas Maia, C., Saramago de Carvalho Marques dos Santos Cordovil, C., Tillvitz do Nascimento, C., Antonio da Silva, E., & Eduardo Borba, C. (2021). Effect of production temperature in biochar properties from bamboo culm and its influences on atrazine adsorption from aqueous systems. Journal of Molecular Liquids, 343, 117667. doi:10.1016/j.molliq.2021.117667.

Zama, E. F., Zhu, Y. G., Reid, B. J., & Sun, G. X. (2017). The role of biochar properties in influencing the sorption and desorption of Pb(II), Cd(II) and As(III) in aqueous solution. Journal of Cleaner Production, 148, 127–136. doi:10.1016/j.jclepro.2017.01.125.

Kajina, W., & Rousset, P. (2018). Coupled effect of feedstock and pyrolysis temperature on biochar as soil amendment. IC-STAR 4.0: Interdisciplinary research enhancement for industrial revolution 4.0. Belintung, Indonesia.

Domingues, R. R., Trugilho, P. F., Silva, C. A., De Melo, I. C. N. A., Melo, L. C. A., Magriotis, Z. M., & Sánchez-Monedero, M. A. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLoS ONE, 12(5), 176884. doi:10.1371/journal.pone.0176884.

Sun, J., He, F., Pan, Y., & Zhang, Z. (2017). Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 67(1), 12–22. doi:10.1080/09064710.2016.1214745.

Uroić Štefanko, A., & Leszczynska, D. (2020). Impact of Biomass Source and Pyrolysis Parameters on Physicochemical Properties of Biochar Manufactured for Innovative Applications. Frontiers in Energy Research, 8, 138. doi:10.3389/fenrg.2020.00138.

Wang, X., Ibrahim, M. M., Tong, C., Hu, K., Xing, S., & Mao, Y. (2020). Influence of pyrolysis conditions on the properties and Pb2+ and Cd2+ adsorption potential of tobacco stem biochar. BioResources, 15(2), 4026–4051. doi:10.15376/biores.15.2.4026-4051.

Li, S., Harris, S., Anandhi, A., & Chen, G. (2019). Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. Journal of Cleaner Production, 215, 890–902. doi:10.1016/j.jclepro.2019.01.106.

Wang, Z., Liu, K., Xie, L., Zhu, H., Ji, S., & Shu, X. (2019). Effects of residence time on characteristics of biochars prepared via co-pyrolysis of sewage sludge and cotton stalks. Journal of Analytical and Applied Pyrolysis, 142, 104659. doi:10.1016/j.jaap.2019.104659.

Yuan, H., Lu, T., Wang, Y., Huang, H., & Chen, Y. (2014). Influence of pyrolysis temperature and holding time on properties of biochar derived from medicinal herb (radix isatidis) residue and its effect on soil CO2 emission. Journal of Analytical and Applied Pyrolysis, 110(1), 277–284. doi:10.1016/j.jaap.2014.09.016.

Sahoo, S. S., Vijay, V. K., Chandra, R., & Kumar, H. (2021). Production and characterization of biochar produced from slow pyrolysis of pigeon pea stalk and bamboo. Cleaner Engineering and Technology, 3, 100101. doi:10.1016/j.clet.2021.100101.

Wakamiya, S., Hayakawa, A., Takahashi, T., Ishikawa, Y., Kurimoto, Y., Sugimoto, H., Aoki, Y., Kato, S., Ogasawara, M., Kanazawa, N., & Hosokawa, N. (2022). Physicochemical properties of biochar derived from wood of Gliricidia Sepium based on the pyrolysis temperature and its applications. Journal of Soil and Water Conservation, 77(3), 322–330.

Mukherjee, A., Patra, B. R., Podder, J., & Dalai, A. K. (2022). Synthesis of Biochar from Lignocellulosic Biomass for Diverse Industrial Applications and Energy Harvesting: Effects of Pyrolysis Conditions on the Physicochemical Properties of Biochar. Frontiers in Materials, 9, 870184. doi:10.3389/fmats.2022.870184.

Sucipta, M., Putra Negara, D. N. K., Tirta Nindhia, T. G., & Surata, I. W. (2017). Characteristics of Ampel bamboo as a biomass energy source potential in Bali. IOP Conference Series: Materials Science and Engineering, 201(1), 12032. doi:10.1088/1757-899X/201/1/012032.

Santín, C., Doerr, S. H., Merino, A., Bucheli, T. D., Bryant, R., Ascough, P., Gao, X., & Masiello, C. A. (2017). Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars. Scientific Reports, 7(1), 11233. doi:10.1038/s41598-017-10455-2.

Pradhan, S., Abdelaal, A. H., Mroue, K., Al-Ansari, T., Mackey, H. R., & McKay, G. (2020). Biochar from vegetable wastes: agro-environmental characterization. Biochar, 2(4), 439–453. doi:10.1007/s42773-020-00069-9.

ASTM D5373-14e-1. (2016). Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke. ASTM International, Pennsylvania, United States. doi:10.1520/D5373-14E01.

Enders, A., Hanley, K., Whitman, T., Joseph, S., & Lehmann, J. (2012). Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology, 114, 644–653. doi:10.1016/j.biortech.2012.03.022.

EBC. (2022). Guidelines for a Sustainable Production of Biochar. European Biochar Foundation (EBC), Arbaz, Switzerland.

IBI. (2015). Standardized Product Definition and Product Testing Guidelines for Biochar that Is Used in Soil. International Biochar Initiative (IBI), Bowdoinham, United States.

Klasson, K. T., Boihem, L. L., Uchimiya, M., & Lima, I. M. (2014). Influence of biochar pyrolysis temperature and post-treatment on the uptake of mercury from flue gas. Fuel Processing Technology, 123, 27–33. doi:10.1016/j.fuproc.2014.01.034.

Yuan, J. H., Xu, R. K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102(3), 3488–3497. doi:10.1016/j.biortech.2010.11.018.

Method 9045 D. (2004). Soil and Waste pH. United States Environmental Protection Agency (USEPA), Washington, United States.

Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Biotechnology, 19(1), 191–215. doi:10.1007/s11157-020-09523-3.

Nam, H., Wang, S., Sanjeev, K. C., Seo, M. W., Adhikari, S., Shakya, R., Lee, D., & Shanmugam, S. R. (2020). Enriched hydrogen production over air and air-steam fluidized bed gasification in a bubbling fluidized bed reactor with CaO: Effects of biomass and bed material catalyst. Energy Conversion and Management, 225, 113408. doi:10.1016/j.enconman.2020.113408.

Shafizadeh, F., & Sekiguchi, Y. (1983). Development of aromaticity in cellulosic chars. Carbon, 21(5), 511–516. doi:10.1016/0008-6223(83)90144-6.

Chen, X., Li, S., Liu, Z., Chen, Y., Yang, H., Wang, X., Che, Q., Chen, W., & Chen, H. (2019). Pyrolysis characteristics of lignocellulosic biomass components in the presence of CaO. Bioresource Technology, 287, 121493. doi:10.1016/j.biortech.2019.121493.

Abdullah, S. S., Yusup, S., Ahmad, M. M., Ramli, A., & Ismail, L. (2010). Thermogravimetry study on pyrolysis of various lignocellulosic biomass for potential hydrogen production. International Journal of Chemical and Molecular Engineering, 4(12), 750-754.

Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M. A., & Sonoki, T. (2014). Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences, 11(23), 6613–6621. doi:10.5194/bg-11-6613-2014.

Yogalakshmi, K., Sivashanmugam, P., Kavitha, S., Kannah, Y., Varjani, S., AdishKumar, S., & Kumar, G. (2002). Lignocellulosic biomass-based pyrolysis: A comprehensive review. Chemosphere, 286, 131824. doi:10.1016/j.chemosphere.2021.131824.

Sharma, R. K., Wooten, J. B., Baliga, V. L., Lin, X., Chan, W. G., & Hajaligol, M. R. (2004). Characterization of chars from pyrolysis of lignin. Fuel, 83(11–12), 1469–1482. doi:10.1016/j.fuel.2003.11.015.


Full Text: PDF

DOI: 10.28991/HEF-2023-04-04-07

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Saowanee Wijitkosum