Utilization Potential of Glass Fiber and Crumbled Rubber as Subgrade Reinforcement for Expansive Soil
Abstract
Doi: 10.28991/HEF-2023-04-03-06
Full Text: PDF
Keywords
References
Barman, D., & Dash, S. K. (2022). Stabilization of expansive soils using chemical additives: A review. Journal of Rock Mechanics and Geotechnical Engineering, 14(4), 1319–1342. doi:10.1016/j.jrmge.2022.02.011.
Zamin, B., Nasir, H., Mehmood, K., Iqbal, Q., Bashir, M. T., & Farooq, A. (2021). Development of Some Novel Suction-Based Correlations for Swell Behavior of Expansive Soils. Advances in Civil Engineering, 2021, 1–13. doi:10.1155/2021/4825593.
Mohamed, A. A. M. S., Yuan, J., Al-Ajamee, M., Dong, Y., Ren, Y., & Hakuzweyezu, T. (2023). Improvement of expansive soil characteristics stabilized with sawdust ash, high calcium fly ash and cement. Case Studies in Construction Materials, 18, 1894. doi:10.1016/j.cscm.2023.e01894.
Soltani, A., Taheri, A., Deng, A., & Nikraz, H. (2022). Tyre rubber and expansive soils: Two hazards, one solution. Proceedings of Institution of Civil Engineers: Construction Materials, 175(1), 14–30. doi:10.1680/jcoma.18.00075.
Zada, U., Jamal, A., Iqbal, M., Eldin, S. M., Almoshaogeh, M., Bekkouche, S. R., & Almuaythir, S. (2023). Recent advances in expansive soil stabilization using admixtures: current challenges and opportunities. Case Studies in Construction Materials, 18. doi:10.1016/j.cscm.2023.e01985.
Yaghoubi, E., Yaghoubi, M., Guerrieri, M., & Sudarsanan, N. (2021). Improving expansive clay subgrades using recycled glass: Resilient modulus characteristics and pavement performance. Construction and Building Materials, 302, 124384. doi:10.1016/j.conbuildmat.2021.124384.
Ikeagwuani, C. C., & Nwonu, D. C. (2019). Emerging trends in expansive soil stabilisation: A review. Journal of Rock Mechanics and Geotechnical Engineering, 11(2), 423–440. doi:10.1016/j.jrmge.2018.08.013.
Miah, M. T., Oh, E., Chai, G., & Bell, P. (2022). Effect of Swelling Soil on Pavement Condition Index of Airport Runway Pavement. Transportation Research Record, 2676(10), 553–569. doi:10.1177/03611981221090517.
Narani, S. S., Abbaspour, M., Mir Mohammad Hosseini, S. M., Aflaki, E., & Moghadas Nejad, F. (2020). Sustainable reuse of Waste Tire Textile Fibers (WTTFs) as reinforcement materials for expansive soils: With a special focus on landfill liners/covers. Journal of Cleaner Production, 247, 119151. doi:10.1016/j.jclepro.2019.119151.
Rabab’ah, S., Al Hattamleh, O., Aldeeky, H., & Abu Alfoul, B. (2021). Effect of glass fiber on the properties of expansive soil and its utilization as subgrade reinforcement in pavement applications. In Case Studies in Construction Materials (Vol. 14). doi:10.1016/j.cscm.2020.e00485.
Sujatha, E. R., Atchaya, P., Darshan, S., & Subhashini, S. (2021). Mechanical properties of glass fiber reinforced soil and its application as subgrade reinforcement. Road Materials and Pavement Design, 22(10), 2384–2395. doi:10.1080/14680629.2020.1746387.
Valipour, M., Shourijeh, P. T., & Mohammadinia, A. (2021). Application of recycled tire polymer fibers and glass fibers for clay reinforcement. Transportation Geotechnics, 27, 100474. doi:10.1016/j.trgeo.2020.100474.
Sosahab, J. S., Ardakani, A., & Hassanlourad, M. (2023). Resilient response and strength of highly expansive clay subgrade stabilized with recycled concrete aggregate and granulated blast furnace slag. Construction and Building Materials, 408, 133816. doi:10.1016/j.conbuildmat.2023.133816.
Amakye, S. Y., & Abbey, S. J. (2021). Understanding the performance of expansive subgrade materials treated with non-traditional stabilisers: A review. Cleaner Engineering and Technology, 4, 100159. doi:10.1016/j.clet.2021.100159.
Su, Y., Xiong, Z., Hu, Z., Zhu, W., Zhou, K., Wang, J., Liu, F., & Li, L. (2022). Dynamic bending study of glass fiber reinforced seawater and sea-sand concrete incorporated with expansive agents. Construction and Building Materials, 358, 129415. doi:10.1016/j.conbuildmat.2022.129415.
Akbarimehr, D., Eslami, A., & Aflaki, E. (2020). Geotechnical behaviour of clay soil mixed with rubber waste. Journal of Cleaner Production, 271, 122632. doi:10.1016/j.jclepro.2020.122632.
Archibong, F. N., Sanusi, O. M., Médéric, P., & Aït Hocine, N. (2021). An overview on the recycling of waste ground tyre rubbers in thermoplastic matrices: Effect of added fillers. Resources, Conservation and Recycling, 175, 105894. doi:10.1016/j.resconrec.2021.105894.
Stevens, J. (1982). Unified soil classification system. Civil Engineering— American Society of Civil Engineers (ASCE), 52(12), 61-62.
Fadmoro, O. F., Kar, S. S., Tiwari, D., & Singh, A. (2022). Environmental and Economic Impact of Mixed Cow Dung and Husk Ashes in Subgrade Soil Stabilization. International Journal of Pavement Research and Technology, 15(4), 835–846. doi:10.1007/s42947-021-00056-8.
Saleh, S., Yunus, N. Z. M., Ahmad, K., & Ali, N. (2019). Improving the strength of weak soil using polyurethane grouts: A review. Construction and Building Materials, 202, 738–752. doi:10.1016/j.conbuildmat.2019.01.048.
DOI: 10.28991/HEF-2023-04-03-06
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Mahmoud Al-Khazaleh, Dua’a O. Al-Masri, Mohamad H. S. Al-Khodari, Diya' A. Y. Hamdan, Ala'a A. Y. Hamdan, Mohammad N. M. Bani Atta