Estimate of Power Output from Hydraulic Jumps Generated Downstream from Barrages

Sherine Ahmed El-Baradei, Mostafa El-Abd, Nahla Hazem

Abstract


Hydropower is an affordable, sustainable way to generate electricity. Research on hydraulic jumps focuses only on determining head loss across the jump, but there are no studies on generating power from the jump. This research aims to utilize energy dissipated from hydraulic jumps for power-generating purposes and further use this power in real-life applications. This research simulates ideal hydraulic conditions to identify the most stable hydraulic jumps, which will be used to generate power. The Seriakos barrage in Egypt was taken as a case study to simulate energy dissipated/power generated from hydraulic jumps generated downstream. This power is then used to simulate lighting up some streets in Egypt according to Egyptian power consumption standards. An Excel spreadsheet was used to mathematically model generated hydraulic jump types, energy dissipated, and generated power. The study found that submerged flow generates maximum power values from hydraulic jumps as opposed to free flow. The research concluded that energy produced by hydraulic jumps at the Seriakos barrage could light up 78 street light bulbs. Although this is a small amount of power, Egypt could meet a significant portion of its energy needs if hydraulic jumps from all its hydraulic structures were utilized for power generation.

 

Doi: 10.28991/HEF-2024-05-01-06

Full Text: PDF


Keywords


Hydropower; Hydraulic Jump; Energy Dissipated; Seriakos Barrage; Mathematical Modelling; Hydraulic Operating Conditions.

References


Olabi, A. G., & Abdelkareem, M. A. (2022). Renewable energy and climate change. Renewable and Sustainable Energy Reviews, 158, 112111. doi:10.1016/j.rser.2022.112111.

Unacademy. (2023). Use of clean energy sources. Unacademy: India's largest learning platform, Karnataka, India. Available online: https://unacademy.com/content/neet-ug/study-material/biology/use-of-clean-energy-sources/ (accessed on May 2023).

World Bank. (2010). World Bank Annual Report 2010 Year in Review. World Bank Annual Report, 2010. doi:10.1596/978-0-8213-8376-6.

Hersh, M. A. (2006). The Economic and Politics of Energy Generation. In Improving Stability in Developing Nations through Automation, 77–82. doi:10.1016/B978-008045406-1/50011-2.

EIA. (2023). EIA projects that renewables will provide nearly half of world electricity by 2050. U.S. Energy Information Administration (EIA): Today in Energy: Independent Statistics and Analysis, Washington, D.C., United States. Available online: https://www.eia.gov/todayinenergy/detail.php?id=41533 (accessed on May 2023).

Akikur, R. K., Saidur, R., Ping, H. W., & Ullah, K. R. (2013). Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review. Renewable and Sustainable Energy Reviews, 27, 738–752. doi:10.1016/j.rser.2013.06.043.

Bandara, W., & Kowshayini, P. (2018). Evaluation of the Performances of Biomass Briquettes Produced with Invasive Eichornia crassipes (Water hyacinth), Wood Residues and Cow Dung for Small and Medium Scale Industries. Journal of Fundamentals of Renewable Energy and Applications, 8(1), 1000247. doi:10.4172/2090-4541.1000247.

Yah, N. F., Oumer, A. N., & Idris, M. S. (2017). Small scale hydro-power as a source of renewable energy in Malaysia: A review. Renewable and Sustainable Energy Reviews, 72, 228–239. doi:10.1016/j.rser.2017.01.068.

NREL. (2023). Hydropower Basics. National Renewable Energy Laboratory (NREL), Colorado, United States. Available online: https://www.nrel.gov/research/hydropower.html (accessed on May 2023).

Laishram, K., Kumar, P. A., & Devi, T. T. (2022). Effect of channel slope and roughness on hydraulic jump in open channel flow. IOP Conference Series: Earth and Environmental Science, 958(1), 012014. doi:10.1088/1755-1315/958/1/012014.

Gupta, S. K., Mehta, R. C., & Dwivedi, V. K. (2013). Modeling of relative length and relative energy loss of free hydraulic jump in horizontal prismatic channel. Procedia Engineering, 51(NUiCONE), 529–537. doi:10.1016/j.proeng.2013.01.075.

Montes, J. S. (1986). A Study of the Undular Jump Profile. 9th Australasian Fluid Mechanics Conference, Auckland, 8-12 December, 148–151.

Kim, Y., Choi, G., Park, H., & Byeon, S. (2015). Hydraulic jump and energy dissipation with sluice gate. Water (Switzerland), 7(9), 5115–5133. doi:10.3390/w7095115.

Chen, J. Y., Liao, Y. Y., & Liu, S. I. (2013). Energy dissipation of hydraulic jump in gradually expanding channel after free overfall. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Series A, 36(4), 452–457. doi:10.1080/02533839.2012.732263.

Al Talib, A. N., Mohammed, A. Y., & Hayawi, H. A. (2019). Hydraulic jump and energy dissipation downstream stepped weir. Flow Measurement and Instrumentation, 69(July), 101616. doi:10.1016/j.flowmeasinst.2019.101616.

Kumar, T.V., Bais, V., Sihag, S., & Singhal, S. (2022). Methods to Increase Energy Dissipation in Hydraulic Jump. International Journal of Engineering Research & Technology, 10(5), 137–141.

Gupta, S. K., & Dwivedi, V. K. (2023). Prediction of Depth Ratio, Jump Length and Energy Loss in Sloped Channel Hydraulic Jump for Environmental Sustainability. Evergreen, 10(2), 942–952. doi:10.5109/6792889.

Zhou, Y., Wu, J., Ma, F., & Hu, J. (2020). Uniform flow and energy dissipation of hydraulic-jump-stepped spillways. Water Science and Technology: Water Supply, 20(4), 1546–1553. doi:10.2166/ws.2020.056.

Sayyadi, K., Heidarpour, M., & Ghadampour, Z. (2022). Effect of Bed Roughness and Negative Step on Characteristics of Hydraulic Jump in Rectangular Stilling Basin. Shock and Vibration, 1722065. doi:10.1155/2022/1722065.

Maryami, E., Mohammadpour, R., Beirami, M. K., & Haghighi, A. T. (2021). Prediction of hydraulic jump characteristics in a closed conduit using numerical and analytical methods. Flow Measurement and Instrumentation, 82(October), 102071. doi:10.1016/j.flowmeasinst.2021.102071.

Annenberg Learner (2023). Insights into algebra 1 Episodes 1-8: teaching for learning. California, United States. Available online: https://www.learner.org/series/insights-into-algebra-1-teaching-for-learning-2/mathematical-modeling/ (accessed on May 2023).

Zhao, Y., Liu, J., & Wang, Z. (2016). Calculation method for conjugate depths in quadratic parabolic channels. Flow Measurement and Instrumentation, 50, 197–200. doi:10.1016/j.flowmeasinst.2016.06.007.

Leutheusser, H. J., & Fan, J. J. (2001). Backward Flow Velocities of Submerged Hydraulic Jumps. Journal of Hydraulic Engineering, 127(6), 514–517. doi:10.1061/(asce)0733-9429(2001)127:6(514).

Imam, E. H., & El Brardei, S. A. (2011). Optimum Operation of Canal Barrages. International Conference on Water, Energy and Environment, November 14–17, Sharjah, United Arab Emirates (UAE).

El Baradei, S. A., Abodonya, A., Hazem, N., Ahmed, Z., El Sharawy, M., Abdelghaly, M., & Nabil, H. (2022). Ethiopian Dam Optimum Hydraulic Operating Conditions to Reduce Unfavorable Impacts on Downstream Countries. Civil Engineering Journal (Iran), 8(9), 1906–1919. doi:10.28991/CEJ-2022-08-09-011.

Dey, S. (2008). Errata for “Characteristics of Turbulent Flow in Submerged Jumps on Rough Beds” by Subhasish Dey and Arindam Sarkar. Journal of Engineering Mechanics, 134(7), 599–599. doi:10.1061/(asce)0733-9399(2008)134:7(599).

Swamee, P. K. (1992). Sluice‐Gate Discharge Equations. Journal of Irrigation and Drainage Engineering, 118(1), 56–60. doi:10.1061/(asce)0733-9437(1992)118:1(56).

Hoffmans, G. J. C. M., & Pilarczyk, K. W. (1995). Local Scour Downstream of Hydraulic Structures. Journal of Hydraulic Engineering, 121(4), 326–340. doi:10.1061/(asce)0733-9429(1995)121:4(326).

Aamir, M., Ahmad, Z., Pandey, M., Khan, M. A., Aldrees, A., & Mohamed, A. (2022). The Effect of Rough Rigid Apron on Scour Downstream of Sluice Gates. Water (Switzerland), 14(14), 2223. doi:10.3390/w14142223.

EECA. (2023). Usage Concerns | Egyptian Electric Cooperative. Egyptian Electric Cooperative Association, Illinois, United States. Available online: https://eeca.coop/energy-efficiency/usage-concerns/ (accessed May 14, 2023).

Mklights. (2023). Does LED street lamps better than high-pressure sodium lamps?. Hangzhou Mklights Technology Co., Zhejiang, China. Available online: https://www.mklights.com/BLOGS/does-led-street-lamps-better-than-high-pressure-sodium-lamps.html (accessed on May 2023).

Majumder, P., & Saha, A. K. (2019). Identification of Most Significant Parameter of Impact of Climate Change and Urbanization on Operational Efficiency of Hydropower Plant. International Journal of Energy Optimization and Engineering, 8(3), 43–68. doi:10.4018/ijeoe.2019070103.

Renewables First. (2023). How much hydropower power can I get. Renewables First, Brimscombe, England. Available online https://www.renewablesfirst.co.uk/renewable-energy-technologies/hydropower/hydropower-learning-centre/how-much-power-could-i-generate-from-a-hydro-turbine/ (accessed on August 2023).

Quaranta, E., Bahreini, A., Riasi, A., & Revelli, R. (2022). The Very Low Head Turbine for hydropower generation in existing hydraulic infrastructures: State of the art and future challenges. Sustainable Energy Technologies and Assessments, 51, 101924. doi:10.1016/j.seta.2021.101924.


Full Text: PDF

DOI: 10.28991/HEF-2024-05-01-06

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Sherine Ahmed ElBaradei, Mostafa El-Abd, Nahla Hazem