Time Series Clustering Analysis for Increases Food Commodity Prices in Indonesia Based on K-Means Method

M. Fariz Fadillah Mardianto, N. Ramadhan Al Akhwal Siregar, Steven Soewignjo, F. Friska Rahmana Putri, Hadi Prayogi, Citra Imama, Dita Amelia, . Sediono, Deshinta Arrova Dewi

Abstract


The global food crisis is perceived to have a significant impact on the national food sector. Time series clustering, a potent data mining technique, is employed to decipher and interpret intricate temporal patterns. Dynamic Time Warping (DTW), a measure that currently appears to be the most relevant, is predicated on the distance between sequences of elements. This paper explores the application of DTW in data mining algorithms to cluster commodity prices in Indonesia, aiming for enhanced accuracy based on time series movement. The clustering algorithm employs the K-Means method, necessitating a comprehensive description of the groups it forms. The analysis results reveal time series clustering for commodity prices using K-Means. Optimal results are achieved with five clusters, based on the commodity price trend. Influencing factors include seasonal variations and government policies related to consumer demand. It is imperative for the government to establish a robust market monitoring system to track commodity price fluctuations in real-time, thereby facilitating the design of effective price stabilization policies. The insights gleaned from this study can guide decision-makers in implementing targeted interventions to stabilize prices, bolster food security, and ensure sustainable economic growth.

 

Doi: 10.28991/HEF-2024-05-03-02

Full Text: PDF


Keywords


Food Commodity Prices; Dynamic Time Wraping; K-Means; Sustainable Economy Growth; Time Series Clustering.

References


World Bank. (2022). Is a Global Recession Imminent? World Bank, Washington, D.C., United States. Available online: https://www.worldbank.org/en/research/brief/global-recession (accessed on May 2024).

BPS-Statistics Indonesia. (2022). The year-on-year (y-on-y) inflation in October 2022 was 5.71 percent. The highest inflation saw in Tanjung Selor at 9.11 percent. Badan Pusat Statistik (BPS - Statistics Indonesia), Jakarta, Indonesia. Available online: https://www.bps.go.id/en/pressrelease/2022/11/01/1866/the-year-on-year--y-on-y--inflation-in-october-2022-was-5-71-percent--the-highest-inflation-saw-in-tanjung-selor-at-9-11-percent-.html (accessed on May 2024).

Punhani, A., Faujdar, N., Mishra, K. K., & Subramanian, M. (2022). Binning-Based Silhouette Approach to Find the Optimal Cluster Using K-Means. IEEE Access, 10, 115025–115032. doi:10.1109/ACCESS.2022.3215568.

Malau, L. R. E., Rambe, K. R., Ulya, N. A., & Purba, A. G. (2023). The impact of climate change on food crop production in Indonesia. Jurnal Penelitian Pertanian Terapan, 23(1), 34–46. doi:10.25181/jppt.v23i1.2418.

Nugraheni, M.Sc., R. D., & Inayah, I. (2022). Impact of the COVID-19 pandemic on world oil and food prices: VECM analysis. Jurnal Ekonomi Dan Pembangunan, 30(1), 15–29. doi:10.14203/jep.30.1.2022.15-29.

Rachmawati, R. A., Saragih, H. J. R., Yanca, I. G. S. K., & Widodo, P. (2022). Analysis of the Threat of Rising Food Prices in Indonesia Due to the Russian-Ukrainian War During the Covid-19 Pandemic. Jurnal Kewarganegaraan, 7(1), 1247.

Ariani, M., & Suryana, A. (2023). Center for Behavioral and Circular Economics Research. National Research and Innovation Agency Jalan Gatot Subroto, 21(1), 1–20. doi:10.21082/akp.v21n1.2023.1-20.

Petitjean, F., Ketterlin, A., & Gançarski, P. (2011). A global averaging method for dynamic time warping, with applications to clustering. Pattern Recognition, 44(3), 678–693. doi:10.1016/j.patcog.2010.09.013.

Maharaj, E. A., D'Urso, P., & Caiado, J. (2019). Time series clustering and classification. Chapman and Hall/CRC, London, United Kingdom. doi:10.1201/9780429058264.

Chen, Y. T., & Witten, D. M. (2022). Selective inference for k-means clustering. Journal of Machine Learning Research (JMLR), 24(152), 1-41.

Ezugwu, A. E., Ikotun, A. M., Oyelade, O. O., Abualigah, L., Agushaka, J. O., Eke, C. I., & Akinyelu, A. A. (2022). A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Engineering Applications of Artificial Intelligence, 110. doi:10.1016/j.engappai.2022.104743.

Izakian, H., Pedrycz, W., & Jamal, I. (2015). Fuzzy clustering of time series data using dynamic time warping distance. Engineering Applications of Artificial Intelligence, 39, 235–244. doi:10.1016/j.engappai.2014.12.015.

Huang, X., Li, Z., Lu, J., Wang, S., Wei, H., & Chen, B. (2020). Time-series clustering for home dwell time during COVID-19: What can we learn from it? ISPRS International Journal of Geo-Information, 9(11), 675. doi:10.3390/ijgi9110675.

Alaziz, S. N., Alshowiman, A. A., Albayati, B., El-Bagoury, A. al A. H., & Shafik, W. (2023). Clustering of COVID-19 Multi-Time Series-Based K-Means and PCA With Forecasting. International Journal of Data Warehousing and Mining, 19(3), 1–25. doi:10.4018/IJDWM.317374.

Oviedo, E. H. S., Travé-Massuyès, L., Subias, A., Pavlov, M., & Alonso, C. (2023). DTW k-means clustering for fault detection in photovoltaic modules. XI International Congress of Mechanical Engineering, Mechatronics and Automation 2023, 1-3.

Hu, H., Liu, J., Zhang, X., & Fang, M. (2023). An Effective and Adaptable K-means Algorithm for Big Data Cluster Analysis. Pattern Recognition, 139, 109404. doi:10.1016/j.patcog.2023.109404.

Bagirov, A. M., Aliguliyev, R. M., & Sultanova, N. (2023). Finding compact and well-separated clusters: Clustering using silhouette coefficients. Pattern Recognition, 135. doi:10.1016/j.patcog.2022.109144.

Esquivias, M. A., Jayadi, A., Shafiai, S., Abd Rashid, I. M., Borhanordin, A. H., Agusti, K. S., & Yahwidya, L. (2023). The Nexus between Food Security and Investment, Exports, Infrastructure, and Human Capital Development. Journal of Human, Earth, and Future, 4(2), 221–240. doi:10.28991/HEF-2023-04-02-07.

Stabilitas (2023). Tujuh Program Unggulan GNPIP 2023 Jadi Kunci Stabilitas Harga. Stabilitas, Jakarta, Indonesia. Available online: https://www.stabilitas.id/tujuh-program-unggulan-gnpip-2023-jadi-kunci-stabilitas-harga/ (accessed on June 2024).

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651–666. doi:10.1016/j.patrec.2009.09.011.

Wang, G., Xing, C., Wang, J. S., Wang, H. Y., & Liu, J. X. (2022). Clustering Validity Evaluation Method Based on Two Typical Clustering Algorithms. IAENG International Journal of Computer Science, 49(3), 871.

Ashari, I. F., Dwi Nugroho, E., Baraku, R., Novri Yanda, I., & Liwardana, R. (2023). Analysis of Elbow, Silhouette, Davies-Bouldin, Calinski-Harabasz, and Rand-Index Evaluation on K-Means Algorithm for Classifying Flood-Affected Areas in Jakarta. Journal of Applied Informatics and Computing, 7(1), 89–97. doi:10.30871/jaic.v7i1.4947.

Lenssen, L., & Schubert, E. (2024). Medoid Silhouette clustering with automatic cluster number selection. Information Systems, 120, 102290. doi:10.1016/j.is.2023.102290.


Full Text: PDF

DOI: 10.28991/HEF-2024-05-03-02

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 M. Fariz Fadillah Mardianto, Naufal Ramadhan Al Akhwal Siregar, Steven Soewignjo, Ferdiana Friska Rahmana Putri, Hadi Prayogi, Citra Imama, Dita Amelia, Sediono Sediono, Deshinta Arrova Dewi