Relative Humidity: A Control Valve of the Steam Engine Climate

Rainer Feistel, Olaf Hellmuth

Abstract


In the words of Heinrich Hertz in 1885, the Earth is a “gigantic steam engine”. On average, of the planet’s cross section exposed to sunlight, 72 % belong to the global ocean. With a delay of only 2-3 months, most of the heat absorbed there is released by evaporation rather than by thermal radiation. Water vapour is the dominating “greenhouse gas” of the marine troposphere with a typical relative humidity (RH) of 80 % at the surface. Observing the heat transport across the ocean surface permits insight in the powerhouse of the “steam engine”, controlled by the RH at the surface, a quantity that is often considered the “Cinderella” among the climate data. RH of the troposphere also controls cloud formation that is equally fundamental as challenging for climate research. As a precise and perfectly consistent thermodynamic basis for the description of such processes, the new oceanographic standard TEOS-10 was introduced by UNESCO/IOC in 2010 and IUGG in 2011. Its equations cover all thermodynamic properties of liquid water, seawater, ice and humid air, as well as their mutual equilibria and phase transitions. For harmonisation of the inconsistent RH definitions of humid air between meteorology and climatology, the relative fugacity has been defined as a physically more reasonable RH substitute that does not rely on the approximation of ideal gases.

 

Doi: 10.28991/HEF-2021-02-02-06

Full Text: PDF


Keywords


Climate; Humidity; Evaporation; Hydrological Cycle; Latent Heat Flux; Greenhouse Effect; Ocean Surface; Chemical Potential; Fugacity; TEOS-10; Global Warming; Uncertainty; Clouds; Thermodynamics; Seawater; Troposphere.

References


Mulligan, J.F., Hertz, G.G. (1997): An unpublished lecture by Heinrich Hertz: “On the energy balance of the Earth”. American Journal of Physics 65, 36-45. doi:10.1119/1.18565.

Hoepke, K.-P. (2007): Geschichte der Fridericiana: Stationen in der Geschichte der Universität Karlsruhe (TH) von der Gründung 1825 bis zum Jahr 2000 (Veröffentlichungen aus dem Universitätsarchiv Karlsruhe). Universitätsverlag Karlsruhe, Karlsruhe.

AGU (1995): Water Vapor in the Climate System. Special Report. December 1995. American Geophysical Union, Washington, DC, ISBN 0-87590-865-9, Available online: https://www.eso.org/gen-fac/pubs/astclim/espas/pwv/mockler.html (accessed on February 2021).

Ebeling, W., Feistel, R. (1994): Chaos und Kosmos. Spektrum-Verlag, Heidelberg, Germany.

IAMAS (1994). Cloud-Radiation Interactions and their Parameterization in Climate Models. International Association of Meteorology and Atmospheric Sciences, WCRP-86, WMO/TD 648, Geneva, Switzerland.

Flohn, H., Kapala, A., Knoche, H.R., Mächel, H. (1992): Water vapour as an amplifier of the greenhouse effect: new aspects. Meteorol. Zeitschrift, N.F. 1, 120-138. doi:10.1127/metz/1/1992/122.

Hagedorn, H. (1998): Hermann Flohn 19.2.1912 – 23.6.1997. Nachruf der Bayerischen Akademie der Wissenschaften, Available online: https://badw.de/fileadmin/nachrufe/Flohn%20Hermann.pdf (accessed on February 2021).

Hupfer, P. (2020): Klimaforschung – Grundlage der Klimapolitik. Naturwissenschaftliche Rundschau 73(2), 61-70.

Lenoble, J. (1993): Atmospheric Radiative Transfer. A. Deepak Publishing, Hampton, Virginia, United States.

Rosbjerg, D., Rodda, J. (2019): IAHS: a brief history of hydrology. Hist. Geo Space Sci., 10, 109–118. doi:10.5194/hgss-10-109-2019.

Schmidt, W. (1915): Sonnenstrahlung und Verdunstung an freien Wasserflächen; ein Beitrag zum Wärmehaushalt des Weltmeeres und zum Wasserhaushalt der Erde. Annalen der Hydrographie und maritimen Meteorologie 43, 11–178.

Wüst, G. (1920): Die Verdunstung auf dem Meere. Veröffentlichungen des Instituts für Meereskunde an der Universität Berlin. A. Geographisch-naturwissenschaftliche Reihe 6, 1-95.

Sverdrup, H.U. (1936): Das maritime Verdunstungsproblem. Annalen der Hydrographie und maritimen Meteorologie 64, 41-47.

Albrecht, F. (1940). Untersuchungen über den Wärmehaushalt der Erdoberfläche in verschiedenen Klimagebieten. doi:10.1007/978-3-662-42530-5.

Budyko, M.I. (1948): Izpareniye v Estestvennykh Usloviayakh. Gidrometeoizdat, Leningrad, Russia.

Budyko, M.I. (1963): Evaporation under Natural Conditions. Office of Technical Services, U.S. Dept. of Commerce, Washington, United States.

Budyko, M.I., Berlyand, T.G., Efimova, N.A., Zubenok, L.I., Strokina, L.A. (1978): Teplovoi Balans Zemli. Gidrometeoizdat, Leningrad, Russia.

Budyko, M.I. (1984): Evolyutsiya Biosfery. Gidrometeoizdat, Leningrad, Russia.

Budyko, M.I. (1956): Teplovoi Balans Zemnoi Poverkhnosti. Gidrometeoizdat, Leningrad, Russia.

Budyko, M.I. (1958): The Heat Balance of the Earth’s Surface. Office of Technical Services, U.S. Dept. of Commerce, Washington.

Sellers, W.D. (1965): Physical Climatology. University of Chicago Press, Chicago, United States.

Schimming, R. (2014): Theories on the Earth System. Vernadskij, Lovelock and beyond. Sitzungsberichte der Leibniz-Sozietät 120, 171-176. Available online: http://leibnizsozietaet.de/wp-content/uploads/2012/10/Gesamtdatei-SB-120-2014.pdf (accessed on March 2021).

MacCracken, M.C., Volkert, H. (2019): IAMAS: a century of international cooperation in atmospheric sciences. Hist. Geo Space Sci., 10, 119–136. doi:10.5194/hgss-10-119-2019.

Smythe-Wright, D., Gould, W.J., McDougall, T.J., Sparnocchia, S., Woodworth, P.L. (2019): IAPSO: tales from the ocean frontier. Hist. Geo Space Sci., 10, 137–150. doi:10.5194/hgss-10-137-2019.

Kim, Y., Garcia, M., Morillas, L., Weber, U., Black, T.A., Johnson, M.S. (2021): Relative humidity gradients as a key constraint on terrestrial water and energy fluxes. Hydrol. Earth Syst. Sci. 25, 5175–5191. doi:10.5194/hess-25-5175-2021.

Smagorinsky, J. (1969): Numerical simulation of the global atmosphere. In Corby, G.A. (ed.): The Global Circulation of the Atmosphere. Royal Meteorological Society, London, S. 24–41

Lorenz, E.N. (1969): The nature of the global circulation of the atmosphere: a present view. In Corby, G.A. (ed.): The Global Circulation of the Atmosphere. Royal Meteorological Society, London, United Kingdom.

Hasselmann, K. (2002): Is Climate Predictable? In: Bunde, A., Kropp, J., Schellnhuber, H.J. (eds): The Science of Disasters. Springer, Berlin/Heidelberg, pp. 140-169. doi:10.1007/978-3-642-56257-0_4.

Milz, M. (2003): Untersuchungen zur Messung von Wasserdampf in der tropischen Tropopausenregion mit MIPAS/Envisat. Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft. Wissenschaftliche Berichte FZKA 67772.

Tollefsen, J. (2012): Climate forecasting: a break in the clouds. Nature 485, 164-166. doi:10.1038/485164a.

GCOS-171 (2013): WIGOS WMO Integrated Global Observation System. The GCOS Reference Upper-Air Network (GRUAN) Guide, Tech. rep., World Meteorological Organization, Geneva, Switzerland, WIGOS Technical Report No. 2013-03, GCOS-171, Version 1.1.0.3, Available online: https://www.gruan.org/gruan/editor/documents/gcos/gcos-171.pdf (accessed on March 2021).

Bony, S., Stevens, B., Frierson, D.M.W., Jakob, C., Kageyama, M., Pincus, R., Shepherd, T.G., Sherwood, S.C., Siebesma, A.P., Sobel, A.H., Watanabe, M., Webb, M.J. (2015): Clouds, circulation and climate sensitivity. Nature Geoscience 8, 261-268. doi:10.1038/ngeo2398.

Schiermeier, Q. (2015): Physicists, your planet needs you. Nature 520, 140-141. doi:10.1038/520140a.

Eicker, A. (2020): JG04 Geodesy for Atmospheric and Hydrospheric Climate Research (IAG, IAMAS, IACS, IAPSO). Zeitschrift für Geodäsie, Geoinformation und Landmanagement 145, 12-13. doi:10.12902/zfv-0286-2019.

Voosen, P. (2020): Why does the weather stall? New theories explain enigmatic ‘blocks’ in the jet stream. Science 367. doi:10.1126/science.abb5843.

Kolditz, L. (1995): Zur Chemie des Fluors. Sitzungsberichte der Leibniz-Sozietät 7, 5-23. Available online: https://leibnizsozietaet.de/wp-content/uploads/2012/10/Gesamtdatei-SB-007-1995.pdf (accessed on March 2021).

Möller, D. (2003): Luft – Chemie • Physik • Biologie • Reinhaltung • Recht. Walter de Gruyter, New York, United States.

Möller, D. (2006): Das atmosphärische Wasserstoffperoxid. Sitzungsberichte der Leibniz-Sozietät 83, 167-188, Available online: https://leibnizsozietaet.de/wp-content/uploads/2012/10/Gesamtband-SB-083-2006.pdf (accessed on March 2021).

Solomon, S., Rosenlof, K.H., Portmann, R.W., Daniel, J.S., Davis, S.M., Sanford, T.J., Plattner, G.-K. (2010): Contributions of Stratospheric Water Vapor to Decadal Changes in the Rate of Global Warming, Science, 327, 1219-1223. doi:10.1126/science.1182488.

Reiner, P.M. (2004): Einfluss der Vertikalverteilung des Wasserdampfes auf den Lebenszyklus intrasaisonaler Konvektionsschwankungen über dem tropischen Indopazifik. Mitteilungen aus dem Institut für Geophysik und Meteorologie der Universität zu Köln, Heft 158, Köln.

Mohr, S. (2013): Änderung des Gewitter- und Hagelpotentials im Klimawandel. Wissenschaftliche Berichte des Instituts für Meteorologie und Klimaforschung des Karlsruher Instituts für Technologie (KIT), Band 58, Institut für Meteorologie und Klimaforschung am Karlsruher Institut für Technologie Karlsruhe. KIT Scientific Publishing. doi:10.5445/KSP/1000033828.

Mahlke, H. (2017): Mechanismen der Auslösung hochreichender Konvektion im südwestdeutschen Mittelgebirgsraum. Wissenschaftliche Berichte des Instituts für Meteorologie und Klimaforschung des Karlsruher Instituts für Technologie (KIT) Band 65. Institut für Meteorologie und Klimaforschung am Karlsruher Institut für Technologie (KIT) Karlsruhe. KIT Scientific Publishing. doi:10.5445/KSP/1000040122.

Piper, D. A. (2017): Untersuchung der Gewitteraktivität und der relevanten großräumigen Steuerungsmechanismen über Mittel- und Westeuropa. Wissenschaftliche Berichte des Instituts für Meteorologie und Klimaforschung des Karlsruher Instituts für Technologie (KIT) Band 73, Institut für Meteorologie und Klimaforschung am Karlsruher Institut für Technologie (KIT), Karlsruhe, KIT Scientific Publishing. doi:10.5445/KSP/1000072089.

Caldas-Alvarez, A. (2019): Atmospheric Moisture Effects on Deep Convection in the Western Mediterranean. Wissenschaftliche Berichte des Instituts für Meteorologie und Klimaforschung des Karlsruher Instituts für Technologie (KIT) Band 81, Institut für Meteorologie und Klimaforschung am Karlsruher Institut für Technologie (KIT) Karlsruhe. KIT Scientific Publishing. doi:10.5445/KSP/1000097100.

Sasse, R. (2012): Analyse des regionalen atmosphärischen Wasserhaushalts unter Verwendung von COSMO-Simulationen und GPS-Beobachtungen. Wissenschaftliche Berichte des Instituts für Meteorologie und Klimaforschung des Karlsruher Instituts für Technologie (KIT) Band 54. Institut für Meteorologie und Klimaforschung am Karlsruher Institut für Technologie Karlsruhe. KIT Scientific Publishing. doi:10.5445/KSP/1000024938.

Hoffmann, G. (1999): Die Bedeutung der diabatischen Heizung für die synoptische Störungsaktivität der Nordhemisphäre im heutigen und in einem zukünftigen Klima. Mitteilungen aus dem Institut für Geophysik und Meteorologie der Universität zu Köln, Heft 126, Köln.

Riemer, M. (2011): Außertropische Umwandlung tropischer Wirbelstürme. Einfluss auf das Strömungsmuster in den mittleren Breiten. Wissenschaftliche Berichte des Instituts für Meteorologie und Klimaforschung des Karlsruher Instituts für Technologie (KIT) Band 45. Institut für Meteorologie und Klimaforschung am Karlsruher Institut für Technologie (KIT) Karlsruhe. KIT Scientific Publishing. doi:10.5445/KSP/1000024930.

Wills, R. C., Byrne, M. P., Schneider, T. (2016): Thermodynamic and dynamic controls on changes in the zonally anomalous hydrological cycle. Geophys. Res. Lett. 43, 4640-4649. doi:10.1002/2016GL068418.

Bernhardt, K.-.HH. (1987): Aufgaben der Klimadiagnostik in der Klimaforschung. Gerl. Beitr. zur Geophys. 96, 113–126.

Bernhardt, K.-H. (2016a): Komplexität und Einfachheit im Klimasystem der Erde. Sitzungsberichte der Leibniz-Sozietät, 125/126, 25-47. Available online: https://leibnizsozietaet.de/wp-content/uploads/2012/10/Band-125-126-Gesamtdatei-neu.pdf (accessed on January 2021).

Clayson, C.A., Rutgersson, A., Ward, B., de Souze, R.B., Edson, J., Gleckler, P., Heil, P., Ichii, K., Jung, M., Miralles, D., Mathieu, P.-P., P. Stackhouse, P. (2019): WCRP Surface Flux Task Team. A white paper outlining the need for a coordinated high-level approach to improving our understanding of surface-atmosphere fluxes. World Climate Research Programme, World Meteorological Organization, Geneva, Switzerland, Available online: https://www.wcrp-climate.org/JSC40/12.1(a).%20WDAC%20SurfaceFluxWhitePaper.pdf (accessed on January 2021).

Foken, Th. (1998): Die scheinbar ungeschlossene Energibilanz am Erdboden – eine Herausforderung an die Experimentelle Meteorologie. Sitzungsberichte der Leibniz-Sozietät 24, 131-150. Available online: https://leibnizsozietaet.de/wp-content/uploads/2012/10/Gesamtdatei-SB-24-1998.pdf (accessed on January 2021).

WCRP (2012): Action Plan for WCRP Research Activities on Surface Fluxes. World Climate Research Programme, World Meteorological Organization, Geneva, Switzerland, WCRP Informal/Series Report No.01/2012. Available online: https://www.wcrp-climate.org/documents/woap_fluxes_report_01_2012.pdf (accessed on March 2021).

Woeikoff, Al. (1886): Studie über die Temperatur der Meere und die Aenderungen der Erdtemperatur. Naturwiss. Rundschau 1(21), 178-180.

BIPM (2019): The International System of Units (SI). 9th edition of the SI Brochure, available from the BIPM. Available online: https://www.bipm.org/en/publications/si-brochure (accessed on February 2021).

Randall, D.A. (2012): Atmosphere, Clouds, and Climate. Princeton University Press, Princeton, New Jersey, United States.

Gimeno L., Nieto R., Drumond A., Durán-Quesada A.M. (2013): Ocean Evaporation and Precipitation. In: Orcutt J. (ed.): Earth System Monitoring: Selected Entries from the Encyclopedia of Sustainability Science and Technology. Springer, New York. doi:10.1007/978-1-4614-5684-1_13.

Pierce, D.W., Barnett, T.P., Gleckler, P.J. (2011): Ocean Circulations, Heat Budgets, and Future Commitment to Climate Change. Annual Review of Environment and Resources 36, 27–43. doi:10.1146/annurev-environ-022610-112928.

Josey, S.A., Gulev, S., Yu, L. (2013): Exchanges through the ocean surface. In: Siedler, G., Griffies, S.M., Gould, J., Church, J.A. (eds): Ocean Circulation and Climate. A 21st Century Perspective. Elsevier, Amsterdam, S. 115–140. doi:10.1016/B978-0-12-391851-2.00005-2.

Houghton, J.T. (2015): Global Warming, The complete Briefing. Cambridge University Press, Cambridge, United Kingdom.

Peters-Lidard, C.D., Hossain, F., Leung, L.R., McDowell, N., Rodell, M., Tapiadore, F.J., Turk, F.J., Wood, A. (2019): 100 Years of Progress in Hydrology. American Meteorological Society. doi:10.1175/AMSMONOGRAPHS-D-18-0019.1.

Foken, T. (2008a): Micrometeorology. Springer, Berlin, Heidelberg, Germany.

Brückner, E. (1905): Die Bilanz des Kreislaufs des Wassers auf der Erde. Geogr. Zeitschr, Leipzig, 11, 436–445.

Feistel, R. (2013): Water, steam and climate. Proc. 16th Int. Conf. on the Properties of Water and Steam (Greenwich, UK, 1–5 September 2013). doi:10.13140/2.1.3855.9043.

Feistel, R., Hagen, E., Grant, K. (2003): Climate changes in the subtropical Southeast Atlantic: The St. Helena Island Climate Index (1893-1999). Progress in Oceanography 59, 321-337. doi:10.1016/j.pocean.2003.07.002.

Baumgartner, A., Reichel, E. (1975): The World Water Balance. R. Oldenbourg Verlag, München, Germany.

Peixoto, J.P., Oort, A.H. (1992): Physics of Climate. American Institute of Physics, New York, United States.

Feistel, R., Feistel, S. (2006): Die Ostsee als thermodynamisches System. In: L. Schimansky-Geier, H. Malchow, T. Pöschel (Hrsg.), Irreversible Prozesse und Selbstorganisation, Logos-Verlag, Berlin, p. 247-264. doi:10.13140/RG.2.1.1351.8883.

Yan, Y., Gan, Z., Qi, Y. (2004): Entropy budget of the ocean system. Geophysical Research Letters, 31, L14311, 1-4. doi:10.1029/2004GL019921.

Hunt, J.D., Nascimento, A., Diuana, F.A., de Assis Brasil Weber, N., Malta Castro, G., Chaves, A.C., Amarante Mesquita, A.L., Viviani Colling, A., Smith Schneider, P. (2019): Cooling down the world oceans and the earth by enhancing the North Atlantic Ocean current. Springer Nature Applied Sciences 2, 15. doi:10.1007/s42452-019-1755-y.

Matveev, L.T. (1981): Dinamika Oblakov. Gidrometeoizdat, Leningrad, Russia.

Vietinghoff, H. (2002): Die Verdunstung freier Wasserflächen. UFO Atelier für Gestaltung & Verlag, Allensbach, Germany.

Quante, M. (2011): Verteilung und Transport des Wassers in der Atmosphäre. In: J. L. Lozán, H. Graßl, P. Hupfer, L. Karbe, C.-D. Schönwiese (Hrsg.): WARNSIGNAL KLIMA: Genug Wasser für alle? 3. Auflage. CSC Climate Service Center, Helmholtz-Zentrum Geesthacht, 399 pp.

Liang, J. (2013): Chemical Modeling for Air Resources. Academic Press, New York, pp 143-161. doi:10.1016/B978-0-12-408135-2.00007-0.

Greenwald, T.J. Stephens, G.L. (1995): Satellite Microwave Sensing of Oceanic Cloud Liquid Water: Application to the Earth Radiation Budget and Climate. Atmospheric Science Paper No. 572, Department of Atmospheric Science, Colorado State University, Fort Collins, CO.

Katsaros, K. (2001): Evaporation and Humidity. In: Thorpe, A.S., Turekian, K.K. (eds.): Encyclopedia of Ocean Sciences, Academic Press, S. 870-877. doi:10.1006/rwos.2001.0068.

Lovell-Smith, J.W., Feistel, R., Harvey, A.H., Hellmuth, O., Bell, S.A., Heinonen, M., Cooper, J.R. (2016): Metrological challenges for measurements of key climatological observables. Part 4: atmospheric relative humidity. Metrologia 53, R40–R59. doi:10.1088/0026-1394/53/1/R40.

WMO (2017): WMO Guide to Meteorological Instruments and Methods of Observation. World Meteorological Organization, Genf. https://www.wmo.int/pages/prog/www/IMOP/CIMO-Guide.html.

Wells, N.C. (2012): The Atmosphere and Ocean. Wiley-Blackwell, Oxford, United States.

Feistel, R., Lovell-Smith, J.W. (2017): Defining relative humidity in terms of water activity. Part 1: definition. Metrologia 54, 566–576. doi:10.1088/1681-7575/aa7083.

Mahmud, S. Bhuiyan, M.A.M., Sarmin, N., Elahee, S. (2020): Study of wind speed and relative humidity using stochastic technique in a semi-arid climate region. AIMS Environmental Science 7, 156–173. doi:10.3934/environsci.2020010.

Blunden, J., Arndt, D.S. (2020): State of the Climate in 2019. Bull. Amer. Meteor. Soc. 101 (8), Si–S429. doi:10.1175/2020BAMSStateoftheClimate.1, Special Online Supplement to the Bulletin of the American Meteorological Society, Vol. 101, No. 8, August, 2020

Hocke, K., Martin, L., Kämpfer, N. (2013): Survey of intercomparisons of water vapour measurements. In: Kämpfer, N. (ed): Monitoring Atmospheric Water. Springer, Berlin, S. 243–288.

Dai, A. (2006): Recent Climatology, Variability, and Trends in Global Surface Humidity. J. Climate 19, 3589-3606. doi:10.1175/JCLI3816.1.

Gerding, M., Weisheimer, A., Dethloff, K., Neuber, R. (2002): Ground-based GPS: Benefit in the data sparse Arctic region. Proceedings of the COST Action 716 Workshop: Exploitation of ground-based GPS for meteorology. Potsdam, Germany. Available online: https://epic.awi.de/id/eprint/5750/1/Ger2002m.pdf (accessed on March 2021).

Zhang, C., Xie, S., Klein, S.A., Ma, H.-Y., Tang, S., Van Weverberg, K., Morcrette, C.J., Petch, J. (2018a): CAUSES: Diagnosis of the Summertime Warm Bias in CMIP5 Climate Models at the ARM Southern Great Plains Site. J. Geophys. Res. Atmos. 123, 2968-2992. doi:10.1002/2017JD027200.

Hagen, E., Feistel, R. (2008): Baltic Climate Change. In: Feistel, R., Nausch, G., Wasmund, N. (eds.): State and Evolution of the Baltic Sea 1952-2005. John Wiley and Sons, Hoboken, NJ, S. 93-120. doi:10.1002/9780470283134.ch5.

Hellmuth, O. (2006b): Columnar modelling of nucleation burst evolution in the convective boundary layer – first results from a feasibility study. Part II: Meteorological characterisation. Atmos. Chem. Phys. 6, 4215–4230. doi:10.5194/acp-6-4215-2006.

Stull, R.B. (1997): An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht, Netherlands.

Trenberth, K.E., Fasullo, J., Smith, L. (2005): Trends and variability in column-integrated atmospheric water vapor. Climate Dynamics 24, 741–758. doi:10.1007/s00382-005-0017-4.

Rapp, D. (2014): Assessing Climate Change: Temperatures, Solar Radiation and Heat Balance. 3rd edition, Springer, Cham Heidelberg New York, United States.

Rapp, D. (2010): Assessing Climate Change: Temperatures, Solar Radiation, and Heat Balance. 2nd edition, Praxis Publishing, Chichester, UK.

Thomas, G. E., Stamnes. K. (1999): Radiative Transfer in the Atmosphere and Ocean. Cambridge University Press, Cambridge.

Liou, K.N. (2002): An Introduction to Atmospheric Radiation. Second Edition. International Geophysics Series, Vol. 84. Academic Press, New York

Frankignoul, C. (1985): Sea Surface Temperature Anomalies, Planetary Waves, and Air-Sea Feedback in the Middle Latitudes. Rev. Geophys. 23, 357-390. doi:10.1029/RG023i004p00357.

Manabe, S., Wetherald, R.T. (1967): Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity. J. Atm. Sci. 24, 241-259. doi:10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2.

Möller, F. (1963): On the influence of changes in CO2 concentration in air on the radiation balance of Earth’s surface and on climate. J. Geophys. Res. 68, 3877–3886. doi:10.1029/JZ068i013p03877.

Rieck, M., Nuijens, L., Stevens, B. (2012): Marine Boundary Layer Cloud Feedbacks in a Constant Relative Humidity Atmosphere. J. Atm. Sci. 69, 2538-2550. doi:10.1175/JAS-D-11-0203.1.

Wentz, F.J., Ricciardulli, L., Hilburn, K., Mears, C. (2007): How Much More Rain Will Global Warming Bring? Science 317, 233-235. doi:10.1126/science.1140746.

Peixoto, J.P., Oort, A.H. (1996): The climatology of relative humidity in the atmosphere. Journal of Climate 9, 3443-3463. doi:10.1175/1520-0442(1996)009<3443:TCORHI>2.0.CO;2

Wentz, F.J., Schabel, M. (2000): Precise climate monitoring using complementary satellite data sets. Nature, 403, 414-416. doi:10.1038/35000184.

Wright, P.B. (1988): An Atlas Based on the ‘COADS’ Data Set: Fields of Mean Wind, Cloudiness and Humidity at the Surface of the Global Ocean. Report No. 14, Max-Planck-Institut für Meteorologie, Hamburg.

Willett, K.M., Dunn, R.J.H., Thorne, P.W., Bell, S., de Podesta, M., Parker, D.E., Jones, P.D., Williams Jr., C.N. (2014): HadISDH land surface multi-variable humidity and temperature record for climate monitoring. Clim. Past 10, 1983–2006. doi:10.5194/cp-10-1983-2014.

Kraus, E.B., Businger, J.A. (1994): Atmosphere-Ocean Interaction. Oxford University Press, Clarendon Press, Oxford, New York, United States.

Lewis, G.N. (1901): Das Gesetz physiko-chemischer Vorgänge. Z. Phys. Chem., Lpz. 38, 205–226; The Law of Physico-Chemical Change. Proceedings of the American Academy of Arts and Sciences 37, 49-69. doi:10.2307/20021635.

Malinin, V.N., Gordeeva, S.M. (2017): Variability of Evaporation and Precipitation over the Ocean from Satellite Data. Izvestiya, Atmospheric and Oceanic Physics 53, 934–944. doi:10.1134/S0001433817090195.

Thurnherr, I., Kozachek, A., Graf, P., Weng, Y., Bolshiyanov, D., Landwehr, S., Pfahl, S., Schmale, J., Sodemann, H., Steen-Larsen, H.C., Toffoli, A., Wernli, H., Aemisegger, F. (2020): Meridional and vertical variations of the water vapour isotopic composition in the marine boundary layer over the Atlantic and Southern Ocean. Atmos. Chem. Phys. 20, 5811–5835. doi:10.5194/acp-20-5811-2020.

Guggenheim, E.A. (1949): Thermodynamics. North-Holland, Amsterdam, Netherlands.

Prausnitz, J.M., Lichtenthaler, R.N., Gomes de Azevedo, E. (1999): Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd edn. Prentice Hall, New Jersey, United States.

Trabert, W. (1896): Neuere Beobachtungen über die Verdampfungsgeschwindigkeit. Meteorologische Zeitschrift 13, 261-263.

Debski, K. (1966): Continental Hydrology, Volume 2: Physics of Water, Atmospheric Precipitation, and Evaporation. Scientific Publications Foreign Cooperation Center of the Central Institute, Warsaw, Poland.

Brutsaert, W. (1982): Evaporation into the Atmosphere: Theory, History and Applications. Springer, Dordrecht, Germany.

Bunker, A.F. (1976): Computation of Surface Energy Flux and Annual Air-Sea Interaction Cycles of the North Atlantic Ocean. Monthly Weather Review 104, 1122-1140. doi:10.1175/1520-0493(1976)104<1122:COSEFA>2.0.CO;2.

Liu, W.T., Katsaros, K.B., Businger, J.A. (1979): Bulk Parameterization of Air-Sea Exchanges of Heat and Water Vapor Including the Molecular Constraints at the Interface. Journal of Atmospheric Sciences 36, 1722-1735. doi:10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2.

Liou, K.-N., Zheng, Q. (1984): A numerical experiment on the interactions of radiation, clouds and dynamic processes in a general circulation model. J. Atmos. Sci. 41, 1513-1535.

Doney, S.C. (1995): Irreversible thermodynamics and air-sea exchange. J. Geophys. Res. 100, 8541-8553. doi:10.1029/95JC00685.

Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M.; Claussen M., Dümenil, L., Esch, M., Giorgetta, M., Schlese, U., Schulzweida, U. (1996): The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. Max-Planck-Institut für Meteorologie, REPORT No. 218. Available online: https://pure.mpg.de/rest/items/item_1781494/component/file_1786328/content (accessed on March 2021).

Fairall, C.W., Bradley, E.F., Hare, J.E., Grachev, A.A., Edson, J.B. (2003): Bulk Parameterization of Air–Sea Fluxes: Updates and Verification for the COARE Algorithm. J. Climate 16, 571-591. doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I., Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., E. Roeckner, E. (2013): Atmospheric component of the MPI-M Earth System Model: ECHAM6. Journal of Advances in Modeling Earth Systems 5, 146-172. doi:10.1002/jame.20015.

Zhang, R., Wang, X., Wang, C. (2018b): On the Simulations of Global Oceanic Latent Heat Flux in the CMIP5 Multimodel Ensemble. J. Climate 31, 7111-7127. doi:10.1175/JCLI-D-17-0713.1.

Thornthwaite, C.W., Holzman, B. (1939): The determination of evaporation from land and water surfaces. Mon. Wea. Rev. 67, 4-11. doi:10.1175/1520-0493(1939)67<4:TDOEFL>2.0.CO;2.

Hasse, L. (1971): The Sea Surface Temperature Deviation and the Heat Flow at the Sea-Air-Interface. Boundary-Layer Meteorology 1, 368-379. doi:10.1007/BF02186037.

Wunderlich, W.O. (1972): Heat and Mass Transfer Between a Water Surface and the Atmosphere. Report No. 0-6803, Tennessee Valley Authority, Illinois, United States.

Thompson, O.E., Pinker, R.T. (1981): An error analysis of the Thornthwaite-Holzmann equations for estimating sensible and latent heat fluxes over crop and forest canopies. J. Appl. Metorol. 20, 250-254. doi:10.1175/1520-0450(1981)020<0250:AEAOTT>2.0.CO;2.

Prandtl, L. (1925): Bericht über Untersuchungen zur ausgebildeten Turbulenz. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 5, 136–139.

Prandtl, L. (1932): Meteorologische Anwendung der Strömungslehre. Beiträge zur Physik der freien Atmosphäre (Bjerknes-Festschrift) 19, 188-202.

Logwinow, K.T. (1955): Dynamische Meteorologie. VEB Deutscher Verlag der Wissenschaften, Berlin, Germany.

Albert, H.-F. (1988): Modelle zur Berechnung des Windprofils in einer planetarischen Grenzschicht unter Verwendung von Ansätzen für den Turbulenzkoeffizienten. In: Grenzschichtmodellierung und Klimaforschung, Abh. Meteorol. Dienstes DDR Nr. 140, Akademie-Verlag Berlin, 21-26.

Albert, H.-F., Bernhardt, K., Mix, W. (1988): Ergebnisse und Erfahrungen bei der halbempirischen Modellierung der Vertikalprofile von Wind und Turbulenzkoeffizient in der planetarischen Grenzschicht. In: Grenzschichtmodellierung und Klimaforschung, Abh. Meteorol. Dienstes DDR Nr. 140, Akademie-Verlag Berlin, 7-20.

Albert, H.-F., Bernhardt, K., Vogler, P. (1982): Ein quasigeotriptisches integrales Grenzschichtmodell. In: Untersuchungen zur Meteorologie der Grenzschicht und zur Analyse klimatologischer Zeitreihen, Abh. Meteorol. Dienstes DDR Nr. 128, Akademie-Verlag Berlin, 7-29.

Albert, H.-F., Mix, W. (1988): Vergleiche berechneter und empirisch ermittelter Vertikalprofile in der planetarischen Grenzschicht. In: Grenzschichtmodellierung und Klimaforschung, Abh. Meteorol. Dienstes DDR Nr. 140, Akademie-Verlag Berlin, 27-32.

Bernhardt, K., Klose, B., Pethe H. (1982): Grenzschichthöhen und Windprofile nach Radiosondendaten. In: Untersuchungen zur Meteorologie der Grenzschicht und zur Analyse klimatologischer Zeitreihen, Abh. Meteorol. Dienstes DDR Nr. 128, Akademie-Verlag Berlin, 41-51.

Detering, H. W. (1985): Mischungsweg und turbulenter Diffusionskoeffizient in atmosphärischen Simulationsmodellen. Berichte des Instituts für Meteorologie und Klimatologie der Universität Hannover Nr. 25, Hannover, Germany.

Mix, W. (1982): Über die vertikale Verteilung des horizontalen Windvektors und des Turbulenzkoeffizienten in einer planetarischen Grenzschicht mit eingelagerter Inversionsschicht. In: Untersuchungen zur Meteorologie der Grenzschicht und zur Analyse klimatologischer Zeitreihen, Abh. Meteorol. Dienstes DDR Nr. 128, Akademie-Verlag Berlin, 53-73.

Mix, W. (1988): Qualitative Erfassung von Beschleunigungseinflüssen in der planetarischen Grenzschicht. In: Grenzschichtmodellierung und Klimaforschung, Abh. Meteorol. Dienstes DDR Nr. 140, Akademie-Verlag Berlin, 33-41.

Kondo, J. (1975): Air-sea bulk transfer coefficients in diabatic conditions. Boundary-Layer Meteorology 9, 91-112. doi:10.1007/BF00232256.

Kruspe, G. (1977): On moisture flux parameterization. Boundary-Layer Meteorology 11, 55-63. doi:10.1007/BF00221824.

Foken, T. (1990): Turbulenter Energieaustausch zwischen Atmosphäre und Unterlage. Methoden, meßtechnische Realisierung sowie ihre Grenzen und Anwendungsmöglichkeiten. Berichte DWD Nr. 180, Selbstverlag des DWD, Offenbach a.M.

Laubach, J. (1996): Charakterisierung des turbulenten Austausches von Wärme, Wasserdampf und Kohlendioxid über niedriger Vegetation anhand von Eddy-Korrelations-Messungen. Wissenschaftliche Mitteilungen aus dem Institut für Meteorologie der Universität Leipzig und dem Institut für Troposphärenforschung e.V. Leipzig Band 3, Leipzig, Germany.

Enriquez, A.G., Friehe, C.A. (1997): Bulk parameterization of momentum, heat, and moisture fluxes over a coastal upwelling area. J. Geophys. Res. 102(C3), 5781– 5798. doi:10.1029/96JC02952.

Hellmuth, O. (2006a): Columnar modelling of nucleation burst evolution in the convective boundary layer – first results from a feasibility study. Part I: Modelling approach. Atmos. Chem. Phys. 6, 4175–4214. doi:10.5194/acp-6-4175-2006.

Doms, G., Förstner, J., Heise, E., Herzog, H.-J., Mironov, D., Raschendorfer, M., Reinhardt, T., Ritter, B., Schrodin, R., Schulz, J.-P., Vogel, G. (2013): A Description of the Nonhydrostatic Regional COSMO-Model. Part II: Physical Parameterizations, COSMO 5.00, November 2013. Deutscher Wetterdienst, Offenbach. doi:10.5676/DWD_pub/nwv/cosmo-doc_5.00_II.

Cronin, M. F., Gentemann, C. L., Edson, J., Ueki, I., Bourassa, M., Brown, S., … Zhang, D. (2019). Air-Sea Fluxes with a Focus on Heat and Momentum. Frontiers in Marine Science, 6. doi:10.3389/fmars.2019.00430.

Fortak, H.G. (1979): Entropy and climate. In: Bach, W., Pankrath, J., Kellogg, W. (eds.), Developments in atmospheric science, Vol. 10, Man’s impact on climate. Elsevier Sci., New York, p. 1-14.

Ebeling, W., Feistel, R. (1982): Physik der Selbstorganisation und Evolution. Akademie-Verlag, Berlin, Germany.

Feistel, R., Ebeling, W. (2011): Physics of Self-Organization and Evolution. Wiley-VCH, Weinheim, Germany.

Feistel, R., Wright, D.G., Kretzschmar, H.-J., Hagen, E., Herrmann, S., Span, R. (2010): Thermodynamic properties of sea air. Ocean Sci. 6, 91–141. doi:10.5194/os-6-91-2010.

Feistel, R. (2018): Thermodynamic properties of seawater, ice and humid air: TEOS-10, before and beyond. Ocean Sci. 14, 471–502. doi:10.5194/os-14-471-2018.

Landau, L.D., Lifschitz, I.M. (1974): Lehrbuch der Theoretischen Physik VI, Hydrodynamik. Akademie-Verlag, Berlin, Germany.

Hasse, L. (1963): On the cooling of the sea surface by evaporation and heat exchange. Tellus 15, 363-366. doi:10.1111/j.2153-3490.1963.tb01399.x.

Reeves Eyre, J.E.J., Zeng, X., Zhang, K. (2021): Ocean Surface Flux Algorithm Effects on Earth System Model Energy and Water Cycles. Frontiers in Marine Science 8, 642804. doi:10.3389/fmars.2021.642804.

Foken, T., Hupfer, P. (2009): Interaction between the Atmosphere and the Underlying Surface. Berichte zur Polar- und Meeresforschung 588, 40-51.

Oberhuber, J.M. (1988): An atlas based on the 'COADS' data set : The budgets of heat, buoyancy and turbulent kinetic energy at the surface of the global ocean. Report No. 15, Max-Planck-Institut für Meteorologie, Hamburg, Germany.

Boer, G.J. (1993): Climate change and the regulation of the surface moisture and energy budgets. Climate Dynamics 8, 225-239. doi:10.1007/BF00198617

Olbers, D. (2001): A gallery of simple models from climate physics. In: Imkeller P., von Storch, J.S. (eds): Stochastic Climate Models. Progress in Probability, vol 49. Birkhäuser, Basel. doi:10.1007/978-3-0348-8287-3_1.

Yu, L. (2007): Global Variations in Oceanic Evaporation (1958–2005): The Role of the Changing Wind Speed. J. Climate 20, 5376-5390. doi:10.1175/2007JCLI1714.1.

Liu, W.T., Xie, X. (2014): Ocean-Atmosphere Water Flux and Evaporation. In: Njoku E.G. (ed.): Encyclopedia of Remote Sensing. Encyclopedia of Earth Sciences Series, Springer, New York, pp. 480-489. doi:10.1007/978-0-387-36699-9_122.

Sausen, R., Barthel, K., Hasselmann, K. (1988): Coupled ocean-atmosphere models with flux correction. Climate Dynamics 2, 145-163. doi:10.1007/BF01053472.

CENR (1992): Global climate change: hearings before the Committee on Energy and Natural Resources (CENR), United States Senate, One Hundred Second Congress, second session, on the science and energy policy implications of global climate change and international agreements. United States. Congress. Senate. Committee on Energy and Natural Resources. Washington: U.S. G.P.O.: Washington, United States.

Cao, N., Ren, B., Zheng, J. (2015): Evaluation of CMIP5 Climate Models in Simulating 1979–2005 Oceanic Latent Heat Flux over the Pacific. Advances in Atmospheric Sciences 32, 1603–1616. doi:10.1007/s00376-015-5016-8.

Sherwood, S.C., Ingram, W., Tsushima, Y., Satoh, M., Roberts, M., Vidale, P.L., O’Gorman, P.A. (2010): Relative humidity changes in a warmer climate. J. Geophys. Res., 115, D09104. doi:10.1029/2009JD012585.

Held, I.M., Soden, B.J. (2012): Using Relative Humidity as a State Variable in Climate Feedback Analysis. J. Climate 25, 2578-2582. doi:10.1175/JCLI-D-11-00721.1.

Levang, S.J., Schmitt, R.W. (2015): Centennial changes of the global water cycle in CMIP5 models. J. Climate, 28, 6489–6502. doi:10.1175/JCLI-D-15-0143.1.

Pfeifroth, U., Hollmann, R., Ahrens, B. (2012): Cloud Cover Diurnal Cycles in Satellite Data and Regional Climate Model Simulations. Meteorologische Zeitschrift 21, 551–560. doi:10.1127/0941-2948/2012/0423.

King, M.D., Platnick, S., Menzel, W.P., Ackerman, S.A., Hubanks, P.A., (2013): Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites. IEEE Trans. Geosci. Remote Sensing 51, 3826-3852. doi:10.1109/TGRS.2012.2227333.

Marshak, A., Davis, A.B. (2005): 3D Radiative Transfer in Cloudy Atmospheres. Springer-Verlag Berlin, Germany.

Matus, A.V., L’Ecuyer, T.S. (2017): The role of cloud phase in Earth’s radiation budget, J. Geophys. Res. Atmos., 122, 2559–2578. doi:10.1002/2016JD025951.

Arrhenius, S. (1896): On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground. London, Edinburgh, and Dublin. Philosophical Magazine and Journal of Science 41, 237–275. doi:10.1080/14786449608620846.

Dong, Y., Armour, K.C., Zelinka, M.D., Proistosescu, C., Battisti, D.S., Zhou, C., Andrews, T. (2020): Intermodel spread in the pattern effect and its contribution to climate sensitivity in CMIP5 and CMIP6 models. Journal of Climate 33, 7755 – 7775. doi:10.1175/JCLI-D-19-1011.1.

Stouffer, R.J., Eyring, V., Meehl, G.A., Bony, S., Senior, C., Stevens, B., Taylor, K.E. (2017): CMIP5 scientific gaps and recommendations for CMIP6. Bulletin of the American Meteorological Society 98, 95–105. doi:10.1175/BAMS-D-15-00013.1.

Zelinka, M. D., Myers, T.A., McCoy, D.T., Po-Chedley, S., Caldwell, P.M., Ceppi, P., Klein, S.A., Taylor, K.E. (2020): Causes of higher climate sensitivity in CMIP6 models. Geophysical Research Letters 47, e2019GL085782. doi:10.1029/2019GL085782.

Goosse, H., Barriat, P., Lefebvre, W., Loutre, M., Zunz, V. (2008-2010): Introduction to climate dynamics and climate modeling (2008-2010). UCL Université catholique de Louvain, Online textbook.

Mülmenstädt, J., Salzmann, M., Kay, J.E., Zelinka, M.D., Ma, P.-L., Nam, C., Kretzschmar, J., Hörnig, S., Quaas, J. (2021): An underestimated negative cloud feedback from cloud lifetime changes. Nature Climate Change 11, 508–513. doi:10.1038/s41558-021-01038-1.

Held, I.M., Soden, B.J. (2000): Water Vapor Feedback and Global Warming. Annual Review of Energy and the Environment 25, 441-475. doi:10.1146/annurev.energy.25.1.441.

Folland, C.K., Karl, T.R., Christy, J.R., Clarke, R.A., Gruza, G.V., Jouzel, J., Mann, M.E., Oerlemans, J., Salinger, M.J., Wang, S.-W. (2001): Observed Climate Variability and Change. In: Climate Change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the IPCC. Cambridge University Press, Cambridge, UK. Chapter 2, pp. 99-181. Available online: https://www.ipcc.ch/report/ar3/wg1 (accessed on March 2021).

Burrows, W.J. (2003): Weather Cycles, Second Edition: Real or Imaginary? Cambridge University Press, Cambridge, UK.

Smagorinsky, J. (1960): On the Dynamical Prediction of Large-Scale Condensation by Numerical Methods. In: Weickmann, H. (ed.): Physics of Precipitation: Proceedings of the Cloud Physics Conference, Woods Hole, Massachusetts, June 3–5, 1959. American Geophysical Union, S. 71-78. doi:10.1029/GM005p0071.

Xu, K.-M, Randall, A.A. (1996): A Semiempirical Cloudiness Parameterization for Use in Climate Models. J, Atm. Sci 53, 3084-3102. doi:10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2.

Klaus, D., Dorn, W., Dethloff, K., Rinke, A., Mielke, M. (2012): Atmosphere 2012, 419-450. doi:10.3390/atmos3030419.

Faizal, M., Ahmed, M.R. (2011): On the ocean heat budget and ocean thermal energy conversion. Int. J. Energy Resaerch 35, 1119-1144. doi:10.1002/er.1885.

Wippermann, F. (1971): Die “Scales” als ein erstes Ordnungsprinzip für alle Turbulenzvorgänge der Atmosphäre. Promet Meteorologische Fortbildung. Mikro-und Maktroturbulenz 1971, 1/2, 16-20, Available online: https://www.dwd.de/DE/leistungen/pbfb_verlag_promet/pdf_promethefte/1_1_2_pdf.pdf?__blob=publicationFile&v=3 (accessed on March 2021).

Haigh, J.D., Cargill, P. (2015): The Sun’s Influence on Climate. Princeton University Press, New Jersey, United States.

Schepanski, K. (2006): Natürliche Variabilität der Wolken im Klimamodell. Diplomarbeit, Leibniz-Institut für Meereswissenschaften, Kiel, Germany.

Scurla, H. (1984): Durch das Land der Azteken. Berichte deutscher Reisender des 19. Jahrhunderts aus Mexiko und Guatemala. Verlag der Nation, Berlin, Germany.

Heyer, E. (1979): Witterung und Klima. Eine allgemeine Klimatologie. BSB B. G. Teubner Verlagsgesellschaft, Leipzig.

Hancock, G., Pankhurst, R., Willetts, D. (1983): Under Ethiopian Skies. H&L Communications, London, Germany.

Komabayasi, M. (1967): Discrete equilibrium temperatures of a hypothetical planet with the atmosphere and the hydrosphere of one component-two phase system under constant solar radiation. J. Meteorol. Soc. Japan 45, 137–138. doi:10.2151/jmsj1965.45.1_137.

Ingersoll, A.P. (1969): The runaway greenhouse: a history of water on Venus. J. Atmos. Sci. 26, 1191–1198. doi:10.1175/1520-0469(1969)026<1191:TRGAHO>2.0.CO;2.

Ingersoll, A.P. (2013): Planetary Climates. Princeton University Press, Princeton, New Jersey, United States.

Bülow, M. (2020): Anthropogener Klimawandel? – Rückkopplungen und Fallgruben. Leibniz Online 39. Available online: https://leibnizsozietaet.de/wp-content/uploads/2020/02/Portfolio-LO-39-2020.pdf (accessed on March 2021).

Pelkowski, J. (1995): Entropieerzeugung eines strahlenden Planeten: Studien zu ihrer Rolle in der Klimatheorie. Verlag Harry Deutsch, Thun, Frankfurt am Main, Germany.

Pelkowski, J. (2014): On the Clausius-Duhem Inequality and Maximum Entropy Production in a Simple Radiating System. Entropy 16, 2291-2308. doi:10.3390/e16042291.

Pierrehumbert, R.T. (2010): Principles of Planetary Climate. Cambridge University Press, Cambridge, UK.

Rothman, L. S., Jacquemart, D., Barbe, A., Chris Benner, D., Birk, M., Brown, L. R., … Wagner, G. (2005). The HITRAN 2004 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 96(2), 139–204. doi:10.1016/j.jqsrt.2004.10.008.

Lutgens, F.G., Tarbuck, E.J. (2001): The Atmosphere. Prentice Hall, Upper Saddle River, New Jersey, United States.

Zhong, W., Haigh, J.D. (2013): The greenhouse effect and carbon dioxide. Weather 68, 100-105. doi:10.1002/wea.2072.

Czerny, M. (1954): Zur Integration des Planckschen Strahlungsgesetzes. Zeitschrift für Physik, 139, 302-308.

Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., … Canadell, J. G. (2018). Global Carbon Budget 2018. Earth System Science Data, 10(4), 2141–2194. doi:10.5194/essd-10-2141-2018.

Emden, R. (1913): Über Strahlungsgleichgewicht und atmosphärische Strahlung. Sitzungsberichte der mathematisch-physikalischen Klasse der Königlich Bayerischen Akademie der Wissenschaften zu München 1913, 55-142.

Feistel, R. (2011): Radiative entropy balance and vertical stability of a gray atmosphere. Eur. Phys. J. B 82, 197–206. doi:10.1140/epjb/e2011-20328-2.

Kara, A.B., Hurlburt, H.E., Loh, W.-Y. (2007): Which near-surface atmospheric variable drives air-sea temperature differences over the global ocean? J. Geophys. Res.-Ocean 112, C05020. doi:10.1029/2006JC003833.

Saunders, P.M. (1967): The temperature at the ocean–air interface. J. Atmos. Sci. 24, 269–273. doi:10.1175/1520-0469(1967)024<0269:TTATOA>2.0.CO;2.

Schluessel, P., Emery, W.J., Grassl, H., Mammen, T. (1990): On the bulk-skin temperature difference and its impact on satellite remote sensing of sea surface temperature. J. Geophys. Res. 95, 13341–13356. doi:10.1029/JC095iC08p13341.

Schwartz, S.E. (2007): Heat capacity, time constant, and sensitivity of Earth's climate system. Journal of Geophysical Research 112, D24S05. doi:10.1029/2007JD008746.

Foster, G., Annan, J.D., Schmidt, G.A., Mann, M.E. (2008): Comment on ‘‘Heat capacity, time constant, and sensitivity of Earth’s climate system’’ by S. E. Schwartz. Journal of Geophysical Research Atmospheres 113, D15102. doi:10.1029/2007JD009373.

Frankignoul, C., Hasselmann, K. (1977): Stochastic climate models, Part II. Application to sea-surface temperature anomalies and thermocline variability. Tellus 29, 298-305. doi:10.1111/j.2153-3490.1977.tb00740.x.

Prescott, J.A., Collins, J.A. (1951): The lag of temperature behind solar radiation. Quarterly Journal of the Royal Meteorological Society 77, 121–126. doi:10.1002/qj.49707733112.

Hupfer, P. (1998): Klima und Klimasystem. In: Lozan, J.E., Graßl, H., Hupfer, P. (1998): Warnsignal Klima. Wissenschaftliche Auswertungen, Hamburg, S. 17-24.

IOW (2020): HIX - St. Helena Island Climate Index. Available online: https://www.io-warnemuende.de/hix-st-helena-island-climate-index.html (accessed on December 2020).

Morice, C.P., Kennedy, J.J., Rayner, N.A., Jones, P.D. (2012): Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res. 117, D08101. doi:10.1029/2011JD017187.

Deland, R. (1968): Energetics of Atmospheric Motions. Institut für Theoretische Meteorologie der FU Berlin, Berlin, Germany.

Trenberth, K. (2010): The ocean is warming, isn't it? Nature 465, 304. doi:10.1038/465304a.

Cheng, L., Abraham, J., Zhu, J., Trenberth, K.E., Fasullo, J., Boyer, T., Locarnini, R., Zhang, B., Yu, F., Wan, L., Chen, X., Song, X., Liu, Y., Mann (2020): Record-Setting Ocean Warmth Continued in 2019. Advances in Atmospheric Sciences 37, 137–142. doi:10.1007/s00376-020-9283-7.

Bernhardt, K.-H. (2020): Alexander von Humboldts Wirken für die Klimatologie aus heutiger Sicht. Sitzungsberichte der Leibniz-Sozietät 143, 63-81. Available online: https://leibnizsozietaet.de/wp-content/uploads/2020/09/Gesamtdatei-SB-143-2020.pdf (accessed on March 2021).

Loeb, N.G., Wielicki, B.A., Doellingast, D.R., Smith, G.L., Keyes, D.F., Kato, S., Manalo-Smith, N., Wong, T. (2009): Toward Optimal Closure of the Earth's Top-of-Atmosphere Radiation Budget. J. Climate 22, 748-766. doi:10.1175/2008JCLI2637.1.

Trenberth, K.E., Fasullo, J.T. (2010): Tracking Earth's Energy. Science 328, 316-317. doi:10.1126/science.1187272.

Hume, D. (2015): Eine Untersuchung über den menschlichen Verstand. Felix Meiner Verlag, Hamburg, Germany.

Kant, I. (1956): Kritik der reinen Vernunft. 2nd edition of 1787. Felix Meiner, Hamburg, Germany.

Sugihara, G., May, R., Ye, H., Hsieh, C.-H., Deyle, E., Fogarty, M., Munch, S. (2012): Detecting causality in complex ecosystems. Science 338, 496–500. doi:10.1126/science.1227079.

Stips, A., Macias, D., Coughlan, D., Garcia-Gorriz, E., San Liang, X. (2016): On the causal structure between CO2 and global temperature. Scientific Reports 6, 21691. doi:10.1038/srep21691.

Foken, T. (2008b): The energy balance closure problem – An overview. Ecolog. Appl. 18, 1351-1367. doi:10.1890/06-0922.1.

Mauder, M., Foken, T. Cuxart, J. (2020): Surface Energy Balance Closure over Land: A Review. Boundary-Layer Meteorol. doi:10.1007/s10546-020-00529-6.

Kracher, D., Mengelkamp, H.-T., Foken, T. (2009): The residual of the energy balance closure and its influence on the results of three SVAT models. Meteorologische Zeitschrift 18, 647-661. doi:10.1127/0941-2948/2009/0412.

Schmugge, T.J., André, J.-C. (Hrsg.) (1991): Land Surface Evaporation. Measurement and Parameterization. Springer-Verlag New York, United Kingdom.

McDougall, T.J., Barker, P.M., Holmes, R.M., Pawlowicz, R., Griffies, S.M., Durack, P.J. (2021): The interpretation of temperature and salinity variables in numerical ocean model output and the calculation of heat fluxes and heat content. Geoscientific Model Development 14, 6445-6466. doi:10.5194/gmd-14-6445-2021.

Smith, B., Fricker, H.A., Gardner, A.S., Medley, B., Nilsson, J., Paolo, F.S., Holschuh, N., Adusumilli, S., Brunt, K., Csatho, B., Harbeck, K., Markus, T., Neumann, T., Siegfried, M.R., Zwally, H.J. (2020): Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 30. Apr. 2020. doi:10.1126/science.aaz5845.

Lu, X., McElroy, M.B., Kiviluoma, J. (2009): Global potential for wind-generated electricity. Proceedings of the National Academy of Sciences of the United States of America 106, 10933-10938. doi:10.1073/pnas.0904101106.

Feistel, R. (2017): Salzgehalt des Meeres und relative Feuchte der Luft: Rolle im Klimasystem und Probleme ihrer Definition. Vortrag in der Klasse für Naturwissenschaften und Technikwissenschaften am 10.11.2016. Leibniz Online 25. Available online: https://leibnizsozietaet.de/wp-content/uploads/2012/10/Portfolio-LO-25-2017-1.pdf (accessed on February 2021).

Feistel, R. (2015): Salinity and relative humidity: climatological relevance and metrological needs. Acta Imeko 4, 57-61. doi:10.21014/acta_imeko.v4i4.216.

Maule, C.F., Purucker, M.E., Olsen, N., Mosegaard, K. (2005): Heat flux anomalies in Antarctica revealed by satellite magnetic data. Science 309, 464-467. doi:10.1126/science.1106888.

Pollack, H.N., Hurter, S.J., Johnson, J.R. (1993): Heat Flow from the Earth's Interior: Analysis of the Global Data Set. Reviews of Geophysics 30, 267–280. doi:10.1029/93RG01249.

Lösing, M., Ebbing, J., Szwillus, W. (2020): Geothermal Heat Flux in Antarctica: Assessing Models and Observations by Bayesian Inversion. Front. Earth Sci. 8, 106. doi:10.3389/feart.2020.00105.

Pallé, E., Goode, P.R., Montañés-Rodríguez, P., Koonin, S.E. (2004): Changes in Earth's Reflectance over the Past Two Decades. Science 304, 1299-1301. doi:10.1126/science.1094070.

Schmutz, W., Fehlmann, A., Hüsen, G., Meindl, P., Winkler, R., Thuillier, G., Blattner, P., Buisson, F., Egorova, T., Finsterle, W., Fox, N., Gröbner, J., Hochedez, J.-F., Koller, S., Meftah, M., Meisonnier, M., Nyeki, S., Pfiffner, D., Roth, H., Rozanov, E., Spescha, M., Wehrli, C., Werner, L., Wyss, J.U. (2009): The PREMOS/PICARD instrument calibration. Metrologia, 46, S202-S206. doi:10.1088/0026-1394/46/4/S13.

Bernhardt, A. (2014). Labor standards and the reorganization of work: Gaps in data and research. Annette Bernhardt - UC Berkeley Labor Center, California, United States.

Goode, P.R., Pallé, E., Shoumko, A., Shoumko, S., Montañes-Rodriguez, P., Koonin, S.E. (2021): Earth's albedo 1998–2017 as measured from earthshine. Geophysical Research Letters 48, e2021GL094888. doi:10.1029/2021GL094888.

Bryden, H.L., King, B.A., McCarthy, G.D., McDonagh, E.L. (2014): Impact of a 30% reduction in Atlantic meridional overturning during 2009–2010. Ocean Sci. 10, 683–691. doi:10.5194/os-10-683-2014.

Laskar, J., Fienga, A., Gastineau, M., Manche, H. (2011): La2010: a new orbital solution for the long-term motion of the Earth, Astronomy & Astrophysics 532, A89. doi:10.1051/0004-6361/201116836.

Steinhilber, F., Beer, J., Fröhlich, C. (2009): Total solar irradiance during the Holocene. Geophysical Research Letters 36, L19704. doi:10.1029/2009GL040142.

Pausata, F.S.R., Gaetani, M., Messori, G., Berg, A., Maia de Souza, D., Sage, R.F., deMenocal, P.B. (2020): The Greening of the Sahara: Past Changes and Future Implications. One Earth 2, 235-250. doi:10.1016/j.oneear.2020.03.002.

Monin, A.S. (1982): Vvedeniye v Teoriyu Klimata. Gidrometeoizdat, Leningrad.

Ahmed, H.A., Yu-xin, T., Qi-chang, Y. Al-Helal, I.M., Shady, M.R., Abdel-Ghany. A.M. (2020): Estimation of Sky Thermal Irradiance in Arid Climate under Clear Sky Conditions. Int. J. Thermophys. 41, 76. doi:10.1007/s10765-020-02656-1.

Mitchell, J.F.B. (1994): Modelling Clouds in GCMs for Climate Change Studies. In: IAMAS (1994), S. 40.

Lindzen, R.S. (1997): Can increasing carbon dioxide cause climate change? PNAS 94, 8335-8342. doi:10.1073/pnas.94.16.8335.

Tobiska, W., Nusinov, A. (2006): ISO 21348 – Process for determining solar irradiances. In: 36th COSPAR Scientific Assembly, vol. 36 of COSPAR, Plenary Meeting, p. 2621–2462.

Hupfer, P. (1991): Das Klimasystem der Erde - Diagnose und Modellierungen - Schwankungen und Wirkungen. Akademie Verlag, Berlin, Germany.

Trenberth, K.E, Hurrell, J.W., Solomon, A. (1995): Conservation of mass in three dimensions in global analyses. J. Climate 8, 692-708. doi:10.1175/1520-0442(1995)008<0692:COMITD>2.0.CO;2.

Alexander, M.A., Schubert, S.D. (1990): Regional earth-atmosphere balance estimates based on assimilations with a GCM. Journal of Climate 3, 15-31. doi:10.1175/1520-0442(1990)003<0015:REAEBE>2.0.CO;2.

Hansen, J., Sato, M., Kharecha, P., von Schuckmann, K. (2011): Earth’s Energy Imbalance and Implications. Atmospheric Chemistry and Physics 11, 13421-13449. doi:10.5194/acp-11-13421-2011.

Griffies, S.M., Adcroft, A.J. (2008): Formulating the Equations of Ocean Models. In: Hecht, M.W., Hasumi, H. (eds.): Ocean Modeling in an Eddying Regime, Geophysical Monograph Series 177, American Geophysical Union, pp. 281-317. doi:10.1029/177GM18.

Irving, D., Hobbs, W., Church, J., Zika, J. (2020): A Mass and Energy Conservation Analysis of Drift in the CMIP6 Ensemble. Journal of Climate, 1-43. doi:10.1175/JCLI-D-20-0281.1

Gassmann, A., Herzog, H.-J. (2015): How is local material entropy production represented in a numerical model? Quarterly Journal of the Royal Meteorological Society 141, 854–869. doi:10.1002/qj.2404.

JPOTS (1981): Tenth report of the joint panel on oceanographic tables and standards. Sidney, B.C., Canada, 1-5 September 1980. Unesco technical papers in marine science 36, Unesco. Available online: https://www.jodc.go.jp/jodcweb/info/ioc_doc/html/UNESCO_Tech.htm (accessed on March 2021).

Pauluis, O., Czaja, A., Korty, R. (2008): The Global Atmospheric Circulation on Moist Isentropes. Science 321, 1075-1078. doi:10.1126/science.1159649.

Griffies, S. M., Danabasoglu, G., Durack, P. J., Adcroft, A. J., Balaji, V., Böning, C. W., … Yeager, S. G. (2016). OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geoscientific Model Development, 9(9), 3231–3296. doi:10.5194/gmd-9-3231-2016.

IOC, SCOR, IAPSO (2010): The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp., Paris, France.

McDougall, T.J., Feistel, R., Pawlowicz, R. (2013): Thermodynamics of Seawater. In: Siedler, G., Griffies, S.M., Gould, J., Church, J.A. (eds.): Ocean Circulation and Climate, A 21st Century Perspective. Academic Press/Elsevier, Oxford/Amsterdam, pp. 141–158. doi:10.1016/B978-0-12-391851-2.00006-4.

Hellmuth, O., Feistel, R., & Foken, T. (2021). Intercomparison of different state-of-the-art formulations of the mass density of humid air. Bulletin of Atmospheric Science and Technology, 2(1), 1-43. doi:10.1007/s42865-021-00036-7.

Laliberté, F., Zika, J., Mudryk, L., Kushner, P.J., Kjellsson, J., Döös, K. (2015): Constrained work output of the moist atmospheric heat engine in a warming climate. Science 347, 540-543. doi:10.1126/science.1257103.

Feistel, R., Wielgosz, R., Bell, S. A., Camões, M. F., Cooper, J. R., Dexter, P., … Wolf, H. (2015). Metrological challenges for measurements of key climatological observables: oceanic salinity and pH, and atmospheric humidity. Part 1: overview. Metrologia, 53(1), R1–R11. doi:10.1088/0026-1394/53/1/r1.

Hellmuth, O., Feistel, R., Lovell-Smith, J., Kalova, J. (2015): Metrological Aspects of Humidity: State of Discussion on Common Positions, Challenges, and Needs. Technical Report of the Joint BIPM, CCT-WG6/CCQM and JCS Workshop on Hygrometry, held during the 16th International Conference on the Properties of Water and Steam 2013 (ICPWS 2013), Greenwich, UK.

Pawlowicz, R., McDougall, T., Feistel, R., Tailleux, R. (2012): Preface “An historical perspective on the development of the Thermodnamic Equation of Seawater – 2010”. Ocean Sci. 8, 161–174. doi:10.5194/os-8-161-2012.

JCS (2020): IAPWS/SCOR/IAPSO Joint Committee on Seawater. Available online: https://scor-int.org/project/iapws-scor-iapso-joint-committee-on-seawater/ (accessed on March 2021).

Feistel, R., Wright, D. G., Miyagawa, K., Harvey, A. H., Hruby, J., Jackett, D. R., McDougall, T. J., and Wagner, W. (2008): Mutually consistent thermodynamic potentials for fluid water, ice and seawater: a new standard for oceanography, Ocean Sci., 4, 275–291. doi:10.5194/os-4-275-2008.

Marquet, P. (2015): On the computation of moist-air specific thermal enthalpy. Q. J. R. Meteorol. Soc. 141, 67–84. doi:10.1002/qj.2335.

Feistel, R. (2019b): Distinguishing between Clausius, Boltzmann and Pauling Entropies of Frozen Non-Equilibrium States. Entropy 2019, 21, 799. doi:10.3390/e21080799.

Planck, M. (1906): Vorlesungen über die Theorie der Wärmestrahlung. Johann Ambrosius Barth, Leipzig, Germany.

Planck, M. (1911): Vorlesungen über Thermodynamik, 3. Auflage. Veit & Comp., Leipzig, Germany.

Wright, D.G., Feistel, R., Reissmann, J.H., Miyagawa, K., Jackett, D.R., Wagner, W., Overhoff, U., Guder, C., Feistel, A., Marion, G.M. (2010): Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – Part 2: The library routines. Ocean Sci. 6, 695–718. doi:10.5194/os-6-695-2010.

Gatley, D.P. (2013): Understanding Psychrometrics. ASHRAE, Atlanta, Georgia.

Sonntag, D. (1966): Hygrometrie. Akademie-Verlag, Berlin, Germany.

de Groot, S.R., Mazur, P. (1984): Non-equilibrium Thermodynamics. Dover Publications, New York, United States.

Feistel, R., Lovell-Smith, J.W., Hellmuth, O. (2015): Virial Approximation of the TEOS-10 Equation for the Fugacity of Water in Humid Air. Int. J. Thermophys. 36, 44-68. doi:10.1007/s10765-014-1784-0.

Feistel, R. (2019a): Defining relative humidity in terms of water activity. Part 2: relations to osmotic pressures. Metrologia 56, 015015. doi:10.1088/1681-7575/aaf446.

Durack, P.J., Wijffels, S.E. (2010): Fifty-Year Trends in Global Ocean Salinities and Their Relationship to Broad-Scale Warming. J. Climate 23, 4342-4362. doi:10.1175/2010JCLI3377.1.

Durack, P.J. (2015): Ocean salinity and the global water cycle. Oceanography 28, 20–31. doi:10.5670/oceanog.2015.03.

DeAngelis, A.M., Qu, X., Zelinka, M.D., Hall, A. (2015): An observational radiative constraint on hydrologic cycle intensification. Nature 528, 249-253. doi:10.1038/nature15770.

Zhang, W., Furtado, K., Wu, P., Zhou, T., Chadwick, R., Marzin, C., Rostron, J., Sexton, D. (2021): Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Science Advances 7, eabf8021. doi:10.1126/sciadv.abf8021.

Jacob, D. (1998): Intensivierung des Wasserkreislaufs? In: Lozan, J.E., Graßl, H., Hupfer, P. (1998): Warnsignal Klima. Wissenschaftliche Auswertungen, Hamburg, S. 177-178.

Allen, M.R., Ingram, W.J. (2002): Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224-232. doi:10.1038/nature01092.

King, M.D., Howat, I.M., Candela, S.G., Noh, M.J., Jeong, S., Noël, B.P.Y., van den Broeke, M.R., Wouters, B., Negrete, A. (2020): Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat. Communications Earth & Environment 1, 1. doi:10.1038/s43247-020-0001-2.

Alizadeh, M.R., Adamowski, J., Nikoo, M.R., AghaKouchak, A., Dennison, P., Sadegh, M. (2020): A century of observations reveals increasing likelihood of continental-scale compound dry-hot extremes. Sci. Adv. 6, eaaz4571. doi:10.1126/sciadv.aaz4571.

DWD (2020): Was wir heute über das Extremwetter in Deutschland wissen. Deutscher Wetterdienst und Extremwetterkongress Hamburg. Available online: https://boettcher.science/wp-content/uploads/2020/09/Extremwetter_Deutschland_2020_09_23_ final.pdf (accessed on March 2021).


Full Text: PDF

DOI: 10.28991/HEF-2021-02-02-06

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Rainer Erich Feistel