Hydrologic Modeling System HEC-HMS Application for Direct Runoff Determination

Martheana Kencanawati, Data Iranata, Mahendra A. Maulana


The process of identifying the peak discharge using the rational method was introduced in the 1880s. This method is a simple procedure for determining the peak discharge derived from surface runoff flow. Therefore, this research modified a simple hydrological formulation (rational method) based on fieldwork and compared a numerical rainfall model to the relationship model by using the simulation parameters, namely rainfall, infiltration, land use, and stream for hydrological conditions. The novelty of this research is a modification of the theoretical formula (rational method) through the use of fieldwork factors to modify the run-off coefficient. The first scene-up was overlay mapping between land and land use shape files, while the scene-up sampling point was upstream and downstream. This was continued with the estimation curve number until a specific composite curve number was initiated. The rate of infiltration was determined using the Horton method to distinguish the soil type, while the Water Stage Data Logger Starter Kit 13" HOBO KIT-S-U20-04 was used to measure the water level, HEC HMS, and rating curve analysis. The relationships between the fieldwork data using hydrology analysis and modeling were then compared. The results showed that the maximum rainfall calculated and analyzed from the box-and-whisker plot was 140 mm in the year 2019. In addition, the infiltration rate at the upstream and downstream areas was 90 mm/hour and 26.4 mm/hour, or 30% out of the upstream area value. Finally, the estimations of the runoff coefficient were 0.60, 0.45, and 0.0133, while the discharges for the maximum rainfall intensity were observed at 405.7 m3/s, 304.3 m3/s, and 25 m3/s. The simulation using Hydrological Modelling HEC HMS 4.11 computed results of 0.1 m3/s and observed flow of 0.3 m3/s.


Doi: 10.28991/HEF-2023-04-02-02

Full Text: PDF


Peak Flow; Runoff, Fieldwork; Infiltration; Curve Number; HEC-HMS 4.11.


Lee, K. K. F., Ling, L., & Yusop, Z. (2023). The Revised Curve Number Rainfall–Runoff Methodology for an Improved Runoff Prediction. Water (Switzerland), 15(3), 491. doi:10.3390/w15030491.

Hayes, D. C., & Young, R. L. (2006). Comparison of peak discharge and runoff characteristic estimates from the rational method to field observations for small basins in central Virginia. Scientific Investigations Report. doi:10.3133/sir20055254.

Wainwright, J., & Parsons, A. J. (2002). The effect of temporal variations in rainfall on scale dependency in runoff coefficients. Water Resources Research, 38(12), 7-1-7–10. doi:10.1029/2000wr000188.

Singh, J., Altinakar, M. S., & Ding, Y. (2015). Numerical Modeling of Rainfall-Generated Overland Flow Using Nonlinear Shallow-Water Equations. Journal of Hydrologic Engineering, 20(8). doi:10.1061/(asce)he.1943-5584.0001124.

Pilgrim, W., Eaton, P., & Trip, L. (2001). The need for integrated linkages and long-term monitoring of mercury in Canada. Environmental Monitoring and Assessment, 67(1–2), 57–68. doi:10.1023/A:1006431617093.

El Bouanani, L., Baba, K., Ardouz, G., & Latifi, F. E. (2022). Parametric Study of a Soil Erosion Control Technique: Concrete Lozenges Channels. Civil Engineering Journal, 8(9), 1879-1889. doi:10.28991/CEJ-2022-08-09-09.

Hosseiny, H., Crimmins, M., Smith, V. B., & Kremer, P. (2020). A generalized automated framework for urban runoff modeling and its application at a citywide landscape. Water (Switzerland), 12(2), 357. doi:10.3390/w12020357.

Pappas, E. A., Smith, D. R., Huang, C., Shuster, W. D., & Bonta, J. V. (2008). Impervious surface impacts to runoff and sediment discharge under laboratory rainfall simulation. Catena, 72(1), 146–152. doi:10.1016/j.catena.2007.05.001.

Pennington, S. L., & Webster-Brown, J. G. (2008). Stormwater runoff quality from copper roofing, Auckland, New Zealand. New Zealand Journal of Marine and Freshwater Research, 42(1), 99–108. doi:10.1080/00288330809509940.

Salami, A. W., Bilewu, S. O., Ibitoye, A. B., & Ayanshola, A. M. (2017). Runoff hydrographs using Snyder and SCS synthetic unit hydrograph methods: A case study of selected rivers in south west Nigeria. Journal of Ecological Engineering, 18(1), 25–34. doi:10.12911/22998993/66258.

Kim, N. W., Shin, M.-J., & Lee, J. E. (2016). Application of runoff coefficient and rainfall-intensity-ratio to analyze the relationship between storm patterns and flood responses, Hydrology and Earth System Sciences (Preprint). doi:10.5194/hess-2016-194.

Nagy, E. D., Torma, P., & Bene, K. (2016). Comparing Methods for Computing the Time of Concentration in a Medium-Sized Hungarian Catchment. Slovak Journal of Civil Engineering, 24(4), 8–14. doi:10.1515/sjce-2016-0017.

Dhakal, N., Fang, X., Cleveland, T. G., Thompson, D. B., Asquith, W. H., & Marzen, L. J. (2012). Estimation of Volumetric Runoff Coefficients for Texas Watersheds Using Land-Use and Rainfall-Runoff Data. Journal of Irrigation and Drainage Engineering, 138(1), 43–54. doi:10.1061/(asce)ir.1943-4774.0000368.

Pool, S., & Seibert, J. (2021). Gauging ungauged catchments – Active learning for the timing of point discharge observations in combination with continuous water level measurements. Journal of Hydrology, 598, 126448. doi:10.1016/j.jhydrol.2021.126448.

Nossent, J., & Bauwens, W. (2012). Multi-variable sensitivity and identifiability analysis for a complex environmental model in view of integrated water quantity and water quality modeling. Water Science and Technology, 65(3), 539–549. doi:10.2166/wst.2012.884.

Chin, D. A. (2023). Discussion of “NRCS Curve Number Method: Comparison of Methods for Estimating the Curve Number from Rainfall-Runoff Data.” Journal of Hydrologic Engineering, 28(8). doi:10.1061/jhyeff.heeng-5904.

Agashua, L. O., Oluyemi-Ayibiowu, B. D., Ihimekpen, N. I., & Igibah, E. C. (2022). Modeling the semivariogram of climatic scenario around rivers by using stream network mapping and hydrological indicator. Journal of Human, Earth, and Future, 3(1), 17-31. doi:10.28991/HEF-2022-03-01-02.

Kencanawati, M., Anwar, N., & Maulana, M. A. (2021). Modification of basic hydrology formulation based on an approach of the rational method at field measurement. IOP Conference Series: Earth and Environmental Science, 930(1), 12051. doi:10.1088/1755-1315/930/1/012051.

Kotu, V., & Deshpande, B. (2019). Time Series Forecasting. Data Science, 395–445, Morgan Kaufmann, Burlington, United States. doi:10.1016/b978-0-12-814761-0.00012-5.

Kirmani, S. N. U. A., Montgomery, D. C., Runger, G. C., & Hubele, N. F. (2000). Engineering Statistics. The American Statistician, 54(3), 226. doi:10.2307/2685597.

Forthofer, R. N., Lee, E. S., & Hernandez, M. (2007). Linear Regression. Biostatistics, 349–386, Academic Press, Cambridge, United States. doi:10.1016/b978-0-12-369492-8.50018-2.

Meloun, M., & Militký, J. (2011). Statistical analysis of univariate data. Statistical Data Analysis, 73–150. doi:10.1533/9780857097200.73.

Ramachandran, K. M., & Tsokos, C. P. (2015). Descriptive Statistics. Mathematical Statistics with Applications in R, 1–52, Academic Press, Cambridge, United States. doi:10.1016/b978-0-12-417113-8.00001-1.

Kennedy, E. J. (1984). Discharge ratings at gaging stations. Techniques of Water-Resources Investigations 03-A10, U.S. Geological Survey, Reston, United States. doi:10.3133/twri03a10.

Schumann, A. H. (1999). Hydrometry—Principles and Practices, Second edition; R.W. Herschy (Ed.); John Wiley & Sons, Chichester, 1999 Hardcover, VI+376pp., Price £75.00., ISBN 0-471-97350-5. Journal of Hydrology, 222(1–4), 191–192. doi:10.1016/s0022-1694(99)00091-8.

Walega, A., Amatya, D. M., Caldwell, P., Marion, D., & Panda, S. (2020). Assessment of storm direct runoff and peak flow rates using improved SCS-CN models for selected forested watersheds in the Southeastern United States. Journal of Hydrology: Regional Studies, 27(1–4), 191–192. doi:10.1016/j.ejrh.2019.100645.

Gebresellassie Zelelew, D. (2017). Spatial mapping and testing the applicability of the curve number method for ungauged catchments in Northern Ethiopia. International Soil and Water Conservation Research, 5(4), 293–301. doi:10.1016/j.iswcr.2017.06.003.

Wang, S., & Wang, H. (2018). Extending the Rational Method for assessing and developing sustainable urban drainage systems. Water Research, 144, 112–125. doi:10.1016/j.watres.2018.07.022.

Mann, R., & Gupta, A. (2022). Temporal trends of rainfall and temperature over two sub-divisions of Western Ghats. HighTech and Innovation Journal, 3, 28-42. doi:10.28991/HIJ-SP2022-03-03.

Vonnisa, M., Shimomai, T., Hashiguchi, H., & Marzuki, M. (2022). Retrieval of vertical structure of raindrop size distribution from equatorial atmosphere radar and boundary layer radar. Emerging Science Journal, 6(3), 448-459. doi:10.28991/ESJ-2022-06-03-02.

Amatya, D. M., Walega, A., Callahan, T. J., Morrison, A., Vulava, V., Hitchcock, D. R., Williams, T. M., & Epps, T. (2022). Storm event analysis of four forested catchments on the Atlantic coastal plain using a modified SCS-CN rainfall-runoff model. Journal of Hydrology, 608, 127772. doi:10.1016/j.jhydrol.2022.127772.

Fanta, S. S., & Sime, C. H. (2022). Performance assessment of SWAT and HEC-HMS model for runoff simulation of Toba watershed, Ethiopia. Sustainable Water Resources Management, 8(1). doi:10.1007/s40899-021-00596-8.

Hadiani, Rr. R. (2020). Analysis of Drainage Capacity as a Flood Control Effects in Laweyan Sub-District. International Journal of GEOMATE, 19(74), 222–228. doi:10.21660/2020.74.24829.

Baiamonte, G. (2020). A rational runoff coefficient for a revisited rational formula. Hydrological Sciences Journal, 65(1), 112–126. doi:10.1080/02626667.2019.1682150.

Chin, D. A. (2019). Estimating Peak Runoff Rates Using the Rational Method. Journal of Irrigation and Drainage Engineering, 145(6). doi:10.1061/(asce)ir.1943-4774.0001387.

Nazif, S., Soleimani, P., & Eslamian, S. (2022). Dynamic Curve Numbers. Flood Handbook, 357–384. doi:10.1201/9781003262640-22.

Selbig, W. R., Loheide, S. P., Shuster, W., Scharenbroch, B. C., Coville, R. C., Kruegler, J., Avery, W., Haefner, R., & Nowak, D. (2022). Quantifying the stormwater runoff volume reduction benefits of urban street tree canopy. Science of the Total Environment, 806, 151296. doi:10.1016/j.scitotenv.2021.151296.

Ben Khélifa, W., & Mosbahi, M. (2022). Modeling of rainfall-runoff process using HEC-HMS model for an urban ungauged watershed in Tunisia. Modeling Earth Systems and Environment, 8(2), 1749–1758. doi:10.1007/s40808-021-01177-6.

Prokešová, R., Horáčková, Š., & Snopková, Z. (2022). Surface runoff response to long-term land use changes: Spatial rearrangement of runoff-generating areas reveals a shift in flash flood drivers. Science of the Total Environment, 815, 151591. doi:10.1016/j.scitotenv.2021.151591.

Beven, K. (2012). Predicting Hydrographs Using Models Based on Data. In Rainfall‐Runoff Modelling, John Wiley & Sons, Hoboken, United States. doi:10.1002/9781119951001.ch4.

Full Text: PDF

DOI: 10.28991/HEF-2023-04-02-02


  • There are currently no refbacks.

Copyright (c) 2023 Martheana Kencanawati, Data Iranata, Mahendra A. Maulana