Hydrologic Modeling System HEC-HMS Application for Direct Runoff Determination
Abstract
Doi: 10.28991/HEF-2023-04-02-02
Full Text: PDF
Keywords
References
Lee, K. K. F., Ling, L., & Yusop, Z. (2023). The Revised Curve Number Rainfall–Runoff Methodology for an Improved Runoff Prediction. Water (Switzerland), 15(3), 491. doi:10.3390/w15030491.
Hayes, D. C., & Young, R. L. (2006). Comparison of peak discharge and runoff characteristic estimates from the rational method to field observations for small basins in central Virginia. Scientific Investigations Report. doi:10.3133/sir20055254.
Wainwright, J., & Parsons, A. J. (2002). The effect of temporal variations in rainfall on scale dependency in runoff coefficients. Water Resources Research, 38(12), 7-1-7–10. doi:10.1029/2000wr000188.
Singh, J., Altinakar, M. S., & Ding, Y. (2015). Numerical Modeling of Rainfall-Generated Overland Flow Using Nonlinear Shallow-Water Equations. Journal of Hydrologic Engineering, 20(8). doi:10.1061/(asce)he.1943-5584.0001124.
Pilgrim, W., Eaton, P., & Trip, L. (2001). The need for integrated linkages and long-term monitoring of mercury in Canada. Environmental Monitoring and Assessment, 67(1–2), 57–68. doi:10.1023/A:1006431617093.
El Bouanani, L., Baba, K., Ardouz, G., & Latifi, F. E. (2022). Parametric Study of a Soil Erosion Control Technique: Concrete Lozenges Channels. Civil Engineering Journal, 8(9), 1879-1889. doi:10.28991/CEJ-2022-08-09-09.
Hosseiny, H., Crimmins, M., Smith, V. B., & Kremer, P. (2020). A generalized automated framework for urban runoff modeling and its application at a citywide landscape. Water (Switzerland), 12(2), 357. doi:10.3390/w12020357.
Pappas, E. A., Smith, D. R., Huang, C., Shuster, W. D., & Bonta, J. V. (2008). Impervious surface impacts to runoff and sediment discharge under laboratory rainfall simulation. Catena, 72(1), 146–152. doi:10.1016/j.catena.2007.05.001.
Pennington, S. L., & Webster-Brown, J. G. (2008). Stormwater runoff quality from copper roofing, Auckland, New Zealand. New Zealand Journal of Marine and Freshwater Research, 42(1), 99–108. doi:10.1080/00288330809509940.
Salami, A. W., Bilewu, S. O., Ibitoye, A. B., & Ayanshola, A. M. (2017). Runoff hydrographs using Snyder and SCS synthetic unit hydrograph methods: A case study of selected rivers in south west Nigeria. Journal of Ecological Engineering, 18(1), 25–34. doi:10.12911/22998993/66258.
Kim, N. W., Shin, M.-J., & Lee, J. E. (2016). Application of runoff coefficient and rainfall-intensity-ratio to analyze the relationship between storm patterns and flood responses, Hydrology and Earth System Sciences (Preprint). doi:10.5194/hess-2016-194.
Nagy, E. D., Torma, P., & Bene, K. (2016). Comparing Methods for Computing the Time of Concentration in a Medium-Sized Hungarian Catchment. Slovak Journal of Civil Engineering, 24(4), 8–14. doi:10.1515/sjce-2016-0017.
Dhakal, N., Fang, X., Cleveland, T. G., Thompson, D. B., Asquith, W. H., & Marzen, L. J. (2012). Estimation of Volumetric Runoff Coefficients for Texas Watersheds Using Land-Use and Rainfall-Runoff Data. Journal of Irrigation and Drainage Engineering, 138(1), 43–54. doi:10.1061/(asce)ir.1943-4774.0000368.
Pool, S., & Seibert, J. (2021). Gauging ungauged catchments – Active learning for the timing of point discharge observations in combination with continuous water level measurements. Journal of Hydrology, 598, 126448. doi:10.1016/j.jhydrol.2021.126448.
Nossent, J., & Bauwens, W. (2012). Multi-variable sensitivity and identifiability analysis for a complex environmental model in view of integrated water quantity and water quality modeling. Water Science and Technology, 65(3), 539–549. doi:10.2166/wst.2012.884.
Chin, D. A. (2023). Discussion of “NRCS Curve Number Method: Comparison of Methods for Estimating the Curve Number from Rainfall-Runoff Data.” Journal of Hydrologic Engineering, 28(8). doi:10.1061/jhyeff.heeng-5904.
Agashua, L. O., Oluyemi-Ayibiowu, B. D., Ihimekpen, N. I., & Igibah, E. C. (2022). Modeling the semivariogram of climatic scenario around rivers by using stream network mapping and hydrological indicator. Journal of Human, Earth, and Future, 3(1), 17-31. doi:10.28991/HEF-2022-03-01-02.
Kencanawati, M., Anwar, N., & Maulana, M. A. (2021). Modification of basic hydrology formulation based on an approach of the rational method at field measurement. IOP Conference Series: Earth and Environmental Science, 930(1), 12051. doi:10.1088/1755-1315/930/1/012051.
Kotu, V., & Deshpande, B. (2019). Time Series Forecasting. Data Science, 395–445, Morgan Kaufmann, Burlington, United States. doi:10.1016/b978-0-12-814761-0.00012-5.
Kirmani, S. N. U. A., Montgomery, D. C., Runger, G. C., & Hubele, N. F. (2000). Engineering Statistics. The American Statistician, 54(3), 226. doi:10.2307/2685597.
Forthofer, R. N., Lee, E. S., & Hernandez, M. (2007). Linear Regression. Biostatistics, 349–386, Academic Press, Cambridge, United States. doi:10.1016/b978-0-12-369492-8.50018-2.
Meloun, M., & Militký, J. (2011). Statistical analysis of univariate data. Statistical Data Analysis, 73–150. doi:10.1533/9780857097200.73.
Ramachandran, K. M., & Tsokos, C. P. (2015). Descriptive Statistics. Mathematical Statistics with Applications in R, 1–52, Academic Press, Cambridge, United States. doi:10.1016/b978-0-12-417113-8.00001-1.
Kennedy, E. J. (1984). Discharge ratings at gaging stations. Techniques of Water-Resources Investigations 03-A10, U.S. Geological Survey, Reston, United States. doi:10.3133/twri03a10.
Schumann, A. H. (1999). Hydrometry—Principles and Practices, Second edition; R.W. Herschy (Ed.); John Wiley & Sons, Chichester, 1999 Hardcover, VI+376pp., Price £75.00., ISBN 0-471-97350-5. Journal of Hydrology, 222(1–4), 191–192. doi:10.1016/s0022-1694(99)00091-8.
Walega, A., Amatya, D. M., Caldwell, P., Marion, D., & Panda, S. (2020). Assessment of storm direct runoff and peak flow rates using improved SCS-CN models for selected forested watersheds in the Southeastern United States. Journal of Hydrology: Regional Studies, 27(1–4), 191–192. doi:10.1016/j.ejrh.2019.100645.
Gebresellassie Zelelew, D. (2017). Spatial mapping and testing the applicability of the curve number method for ungauged catchments in Northern Ethiopia. International Soil and Water Conservation Research, 5(4), 293–301. doi:10.1016/j.iswcr.2017.06.003.
Wang, S., & Wang, H. (2018). Extending the Rational Method for assessing and developing sustainable urban drainage systems. Water Research, 144, 112–125. doi:10.1016/j.watres.2018.07.022.
Mann, R., & Gupta, A. (2022). Temporal trends of rainfall and temperature over two sub-divisions of Western Ghats. HighTech and Innovation Journal, 3, 28-42. doi:10.28991/HIJ-SP2022-03-03.
Vonnisa, M., Shimomai, T., Hashiguchi, H., & Marzuki, M. (2022). Retrieval of vertical structure of raindrop size distribution from equatorial atmosphere radar and boundary layer radar. Emerging Science Journal, 6(3), 448-459. doi:10.28991/ESJ-2022-06-03-02.
Amatya, D. M., Walega, A., Callahan, T. J., Morrison, A., Vulava, V., Hitchcock, D. R., Williams, T. M., & Epps, T. (2022). Storm event analysis of four forested catchments on the Atlantic coastal plain using a modified SCS-CN rainfall-runoff model. Journal of Hydrology, 608, 127772. doi:10.1016/j.jhydrol.2022.127772.
Fanta, S. S., & Sime, C. H. (2022). Performance assessment of SWAT and HEC-HMS model for runoff simulation of Toba watershed, Ethiopia. Sustainable Water Resources Management, 8(1). doi:10.1007/s40899-021-00596-8.
Hadiani, Rr. R. (2020). Analysis of Drainage Capacity as a Flood Control Effects in Laweyan Sub-District. International Journal of GEOMATE, 19(74), 222–228. doi:10.21660/2020.74.24829.
Baiamonte, G. (2020). A rational runoff coefficient for a revisited rational formula. Hydrological Sciences Journal, 65(1), 112–126. doi:10.1080/02626667.2019.1682150.
Chin, D. A. (2019). Estimating Peak Runoff Rates Using the Rational Method. Journal of Irrigation and Drainage Engineering, 145(6). doi:10.1061/(asce)ir.1943-4774.0001387.
Nazif, S., Soleimani, P., & Eslamian, S. (2022). Dynamic Curve Numbers. Flood Handbook, 357–384. doi:10.1201/9781003262640-22.
Selbig, W. R., Loheide, S. P., Shuster, W., Scharenbroch, B. C., Coville, R. C., Kruegler, J., Avery, W., Haefner, R., & Nowak, D. (2022). Quantifying the stormwater runoff volume reduction benefits of urban street tree canopy. Science of the Total Environment, 806, 151296. doi:10.1016/j.scitotenv.2021.151296.
Ben Khélifa, W., & Mosbahi, M. (2022). Modeling of rainfall-runoff process using HEC-HMS model for an urban ungauged watershed in Tunisia. Modeling Earth Systems and Environment, 8(2), 1749–1758. doi:10.1007/s40808-021-01177-6.
Prokešová, R., Horáčková, Š., & Snopková, Z. (2022). Surface runoff response to long-term land use changes: Spatial rearrangement of runoff-generating areas reveals a shift in flash flood drivers. Science of the Total Environment, 815, 151591. doi:10.1016/j.scitotenv.2021.151591.
Beven, K. (2012). Predicting Hydrographs Using Models Based on Data. In Rainfall‐Runoff Modelling, John Wiley & Sons, Hoboken, United States. doi:10.1002/9781119951001.ch4.
DOI: 10.28991/HEF-2023-04-02-02
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Martheana Kencanawati, Data Iranata, Mahendra A. Maulana