Genotype by Environment Interaction on Early-Maturing and High-Yield Maize Hybrids

Achmad Amzeri, . Suhartono, Gita Pawana, Alfian Ma’arif, Iswanto Suwarno

Abstract


Assembling hybrid maize varieties with early-maturing and high-yield traits is one of the methods to increase maize productivity in drylands in Indonesia. Trials of hybrid maize candidates in several locations and different seasons are highly needed to determine the stability of hybrid maize candidates prior to commercial release. The objectives of the research were: (1) to evaluate the performance of maize hybrids in several locations and different seasons; (2) to assess the stability of early-maturing and grain yield characteristics of genotypes evaluated in several locations and seasons; and (3) to determine hybrid maize candidates that can be released as new superior/elite varieties. The research was conducted at 14 research populations (7 different locations, 2 seasons). Each population was planted according to the randomized block design with 10 genotypes as treatments and 4 replicates, so 40 experiment units were obtained. Ten genotypes were tested: six hybrid maize candidates derived from a diallel cross with high yield potential and early-maturing traits (G1, G2, G3, G4, G5, G6) and 4 elite varieties as checks (G7 = SK, G8 = ANM, G9 = Pertiwi-x, and G10 = BISI-x). The combined analysis of variance (ANOVA) conducted on 10 genotypes and 14 research populations revealed that genotypes, environments (season, location, season x location), and interactions (genotype x season, genotype x location, genotype x season x location) significantly affect harvest age and grain yield per hectare (p < 0.01). G4 had an early harvest age (91.93 days) and grain yield per hectare above the average of all genotypes in all environments (8.71 ton ha-1), and was also declared stable based on three stability analyses: Finlay-Wilkinson, Eberhart-Russel, and AMMI. Thus, G4 is recommended as an elite hybrid maize variety with early-maturing, high-yield, stable, and broad adaptability traits.

 

Doi: 10.28991/HEF-2023-04-01-05

Full Text: PDF


Keywords


Grain Yield; Harvest Age; Maize Hybrid; Stability.

References


FAO. (2021). Value of Agricultural Production. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. Available online: https://www.fao.org/faostat/en/#data/QV (accessed on February 2023).

Asnah, A., Masyhuri, M., Mulyo, J. H., & Hartono, S. (2018). Maize farming performance in dry land with biochar and manure in Kalitengah Village, Panggungrejo District, Blitar Regency, Indonesia. IOP Conference Series: Earth and Environmental Science, 215(1). doi:10.1088/1755-1315/215/1/012021.

ICALRRD. (2018). Land Map 1:50.000 Scale. Indonesian Center for Agricultural Land Resources Research and Development, Indonesian Center for Agricultural Land Resources Research and Development (ICALRD), West Java, Indonesia.

Pato, U., Ayu, D. F., Riftyan, E., Restuhadi, F., Pawenang, W. T., Firdaus, R., ... & Jaswir, I. (2022). Cellulose Microfiber Encapsulated Probiotic: Viability, Acid and Bile Tolerance during Storage at Different Temperature. Emerging Science Journal, 6(1), 106-117. doi:10.28991/ESJ-2022-06-01-08.

Rejekiningrum, P., Apriyana, Y., Sutardi, Estiningtyas, W., Sosiawan, H., Susilawati, H. L., Hervani, A., & Alifia, A. D. (2022). Optimising Water Management in Drylands to Increase Crop Productivity and Anticipate Climate Change in Indonesia. Sustainability (Switzerland), 14(18), 1672. doi:10.3390/su141811672.

Cairns, J. E., Hellin, J., Sonder, K., Araus, J. L., MacRobert, J. F., Thierfelder, C., & Prasanna, B. M. (2013). Adapting maize production to climate change in sub-Saharan Africa. Food Security, 5(3), 345–360. doi:10.1007/s12571-013-0256-x.

Badu-Apraku, B., Talabi, A. O., Ifie, B. E., Chabi, Y. C., Obeng-Antwi, K., Haruna, A., & Asiedu, R. (2018). Gains in grain yield of extra-early maize during three breeding periods under drought and rainfed conditions. Crop Science, 58(6), 2399–2412. doi:10.2135/cropsci2018.03.0168.

Bahtiar, Arsyad, M., Salman, D., Azrai, M., Tenrirawe, A., Yasin, M., Gaffar, A., Sebayang, A., & Ochieng, P. J. (2023). Promoting the New Superior Variety of National Hybrid Maize: Improve Farmer Satisfaction to Enhance Production. Agriculture (Switzerland), 13(1), 1–18. doi:10.3390/agriculture13010174.

Alamu, E. O., Maziya-Dixon, B., Menkir, A., Adesokan, M., & Olaofe, O. (2021). Assessment of Functional and Pasting Properties of Fresh Orange Maize Hybrids and Open-Pollinated Varieties as Influenced by Genotype, Harvesting Time, and Growing Location. Frontiers in Nutrition, 8(November), 1–10. doi:10.3389/fnut.2021.757728.

Adu, G. B., Badu-Apraku, B., Akromah, R., & Awuku, F. J. (2022). Combining Abilities and Heterotic Patterns among Early Maturing Maize Inbred Lines under Optimal and Striga-Infested Environments. Genes, 13(12), 89. doi:10.3390/genes13122289.

Rezaul Karim, K. M., Rafii, M. Y., Misran, A. B., Ismail, M. F. Bin, Harun, A. R., Khan, M. M. H., & Chowdhury, M. F. N. (2021). Current and prospective strategies in the varietal improvement of chilli (Capsicum annuum l.) specially heterosis breeding. Agronomy, 11(11), 1–15. doi:10.3390/agronomy11112217.

Labroo, M. R., Studer, A. J., & Rutkoski, J. E. (2021). Heterosis and Hybrid Crop Breeding: A Multidisciplinary Review. Frontiers in Genetics, 12(February), 1–19. doi:10.3389/fgene.2021.643761.

Sang, Z., Zhang, Z., Yang, Y., Li, Z., Liu, X., Xu, Y., & Li, W. (2022). Heterosis and heterotic patterns of maize germplasm revealed by a multiple-hybrid population under well-watered and drought-stressed conditions. Journal of Integrative Agriculture, 21(9), 2477–2491. doi:10.1016/j.jia.2022.07.006.

Kamara, M. M., Rehan, M., Ibrahim, K. M., Alsohim, A. S., Elsharkawy, M. M., Kheir, A. M. S., Hafez, E. M., & El-Esawi, M. A. (2020). Genetic diversity and combining ability of white maize inbred lines under different plant densities. Plants, 9(9), 1–23. doi:10.3390/plants9091140.

Yu, K., Wang, H., Liu, X., Xu, C., Li, Z., Xu, X., Liu, J., Wang, Z., & Xu, Y. (2020). Large-Scale Analysis of Combining Ability and Heterosis for Development of Hybrid Maize Breeding Strategies Using Diverse Germplasm Resources. Frontiers in Plant Science, 11(June), 1–16. doi:10.3389/fpls.2020.00660.

Nasser, L. M., Badu-Apraku, B., Gracen, V. E., & Mafouasson, H. N. A. (2020). Combining Ability of Early-Maturing Yellow Maize Inbreds under Combined Drought and Heat Stress and Well-Watered Environments. Agronomy, 10(10), 1585. doi:10.3390/agronomy10101585.

Badu-Apraku, B., Obisesan, O., Olumide, O. B., & Toyinbo, J. (2021). Gene Action, Heterotic Patterns, and Inter-Trait Relationships of Early Maturing Pro-Vitamin A Maize Inbred Lines and Performance of Testcrosses under Contrasting Environments. Agronomy, 11(7), 1371. doi:10.3390/agronomy11071371.

Yue, H. W., Wang, Y. B., Wei, J. W., Meng, Q. M., Yang, B. L., Chen, S. P., Xie, J. L., Peng, H. C., & Jiang, X. W. (2020). Effects of genotype-by-environment interaction on the main agronomic traits of maize hybrids. Applied Ecology and Environmental Research, 18(1), 1437–1458. doi:10.15666/aeer/1801_14371458.

Alam, M. A., Rahman, M., Ahmed, S., Jahan, N., Khan, M. A. A., Islam, M. R., Alsuhaibani, A. M., Gaber, A., & Hossain, A. (2022). Genetic Variation and Genotype by Environment Interaction for Agronomic Traits in Maize (Zea mays L.) Hybrids. Plants, 11(11), 1–16. doi:10.3390/plants11111522.

Omar, M., Rabie, H. A., Mowafi, S. A., Othman, H. T., El-Moneim, D. A., Alharbi, K., Mansour, E., & Ali, M. M. A. (2022). Multivariate Analysis of Agronomic Traits in Newly Developed Maize Hybrids Grown under Different Agro-Environments. Plants, 11(9), 1–19. doi:10.3390/plants11091187.

Perrot, C., Ferguson, H. J., Mulholland, M., Brown, A., Buckley, C., Humphrey, J., ... & Almeida, A. (2022). Rendered Services and Dysservices of Dairy Farming to the Territories: A Bottom-up Approach in European Atlantic Area. Journal of Human, Earth, and Future, 3(3), 396-402. doi:10.28991/HEF-2022-03-03-010.

Katsenios, N., Sparangis, P., Chanioti, S., Giannoglou, M., Leonidakis, D., Christopoulos, M. V., Katsaros, G., & Efthimiadou, A. (2021). Genotype × environment interaction of yield and grain quality traits of maize hybrids in Greece. Agronomy, 11(2), 1–17. doi:10.3390/agronomy11020357.

Wicaksana, N., Maulana, H., Yuwariah, Y., Ismail, A., Ruswandi, Y. A. R., & Ruswandi, D. (2022). Selection of High Yield and Stable Maize Hybrids in Mega-Environments of Java Island, Indonesia. Agronomy, 12(12), 1–18. doi:10.3390/agronomy12122923.

Mebratu, A., Wegary, D., Mohammed, W., Teklewold, A., & Tarekegne, A. (2019). Genotype × environment interaction of quality protein maize hybrids under contrasting management conditions in eastern and Southern Africa. Crop Science, 59(4), 1576–1589. doi:10.2135/cropsci2018.12.0722.

Lydia Pramitha, J., Joel, J., Rajasekaran, R., Uma, D., Vinothana, K., Balakrishnan, M., Sathyasheela, K. R. V., Muthurajan, R., & Hossain, F. (2022). Stability Analysis and Heterotic Studies in Maize (Zea mays L.) Inbreds to Develop Hybrids with Low Phytic Acid and High-Quality Protein. Frontiers in Plant Science, 12. doi:10.3389/fpls.2021.781469.

Finlay, K. W., & Wilkinson, G. N. (1963). The analysis of adaptation in a plant-breeding programme. Australian Journal of Agricultural Research, 14(6), 742–754. doi:10.1071/AR9630742.

Eberhart, S. A., & Russell, W. A. (1966). Stability Parameters for Comparing Varieties 1. Crop Science, 6(1), 36–40. doi:10.2135/cropsci1966.0011183x000600010011x.

Yue, H., Gauch, H. G., Wei, J., Xie, J., Chen, S., Peng, H., Bu, J., & Jiang, X. (2022). Genotype by Environment Interaction Analysis for Grain Yield and Yield Components of Summer Maize Hybrids across the Huanghuaihai Region in China. Agriculture (Switzerland), 12(5), 1–17. doi:10.3390/agriculture12050602.

Bojtor, C., Mousavi, S. M. N., Illés, Á., Széles, A., Nagy, J., & Marton, C. L. (2021). Stability and adaptability of maize hybrids for precision crop production in a long-term field experiment in hungary. Agronomy, 11(11). doi:10.3390/agronomy11112167.

Katsenios, N., Sparangis, P., Leonidakis, D., Katsaros, G., Kakabouki, I., Vlachakis, D., & Efthimiadou, A. (2021). Effect of genotype×environment interaction on yield of maize hybrids in Greece using AMMI analysis. Agronomy, 11(3), 479. doi:10.3390/agronomy11030479.

Shojaei, S. H., Mostafavi, K., Lak, A., Omrani, A., Omrani, S., Mousavi, S. M. N., Illés, Á., Bojtor, C., & Nagy, J. (2022). Evaluation of stability in maize hybrids using univariate parametric methods. Journal of Crop Science and Biotechnology, 25(3), 269–276. doi:10.1007/s12892-021-00129-x.

Ministry of Agriculture Republic of Indonesia. (2013). Description of Superior Maize Varieties. Agricultural Research and Development Agency, Kota Depok, Indonesia.

Božović, D., Popović, V., Rajičić, V., Kostić, M., Filipović, V., Kolarić, L., & Ugrenović, V. (2020). Stability of the expression of the maize productivity parameters by AMMI models and GGE-biplot analysis. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(3), 1387–1397. doi:10.15835/nbha48312058.

Wang, S. Q., Guo, Q., Wang, S. D., & Chen, Z. Y. (2020). Selecting the superior genotype of summer maize hybrids in mega-environments using AMMI model and GGE biplot in China. Applied Ecology and Environmental Research, 18(2), 3593–3614. doi:10.15666/aeer/1802_35933614.

Balestre, M., Von Pinho, R. G., Souza, J. C., & Oliveira, R. L. (2009). Genotypic stability and adaptability in tropical maize based on AMMI and GGE biplot analysis. Genetics and Molecular Research, 8(4), 1311–1322. doi:10.4238/vol8-4gmr658.

Faye, C. (2022). Comparative Analysis of Meteorological Drought based on the SPI and SPEI Indices. HighTech and Innovation Journal, 3, 15-27. doi:10.28991/HIJ-SP2022-03-02.

D’Aguillo, M., Hazelwood, C., Quarles, B., & Donohue, K. (2022). Genetic Consequences of Biologically Altered Environments. Journal of Heredity, 113(1), 26–36. doi:10.1093/jhered/esab047.

Matongera, N., Ndhlela, T., van Biljon, A., & Labuschagne, M. (2023). Genotype x environment interaction and yield stability of normal and biofortified maize inbred lines in stress and non-stress environments. Cogent Food and Agriculture, 9(1), 2163868. doi:10.1080/23311932.2022.2163868.

Sahebi, M., Hanafi, M. M., Rafii, M. Y., Mahmud, T. M. M., Azizi, P., Osman, M., Abiri, R., Taheri, S., Kalhori, N., Shabanimofrad, M., Miah, G., & Atabaki, N. (2018). Improvement of Drought Tolerance in Rice (Oryza sativa L.): Genetics, Genomic Tools, and the WRKY Gene Family. BioMed Research International, 2018. doi:10.1155/2018/3158474.

Taube, F., Vogeler, I., Kluß, C., Herrmann, A., Hasler, M., Rath, J., Loges, R., & Malisch, C. S. (2020). Yield Progress in Forage Maize in NW Europe—Breeding Progress or Climate Change Effects? Frontiers in Plant Science, 11(August), 1–16. doi:10.3389/fpls.2020.01214.

Harrison, L., Michaelsen, J., Funk, C., & Husak, G. (2011). Effects of temperature changes on maize production in Mozambique. Climate Research, 46(3), 211–222. doi:10.3354/cr00979.

Baloch, N., Liu, W., Hou, P., Ming, B., Xie, R., Wang, K., Liu, Y., & Li, S. (2021). Effect of latitude on maize kernel weight and grain yield across China. Agronomy Journal, 113(2), 1172–1182. doi:10.1002/agj2.20570.

Tonnang, H. E. Z., Balemi, T., Masuki, K. F., Mohammed, I., Adewopo, J., Adnan, A. A., Mudereri, B. T., Vanlauwe, B., & Craufurd, P. (2020). Rapid acquisition, management, and analysis of spatial maize (Zea mays L.) phenological data—Towards ‘Big Data’ for agronomy transformation in Africa. Agronomy, 10(9). doi:10.3390/agronomy10091363.

Yang, X., Menefee, D., Cui, S., & Rajan, N. (2021). Assessing the impacts of projected climate changes on maize (Zea mays) productivity using crop models and climate scenario simulation. Crop and Pasture Science, 72(12), 969–984. doi:10.1071/CP21279.

Chaiyaphum, A., Chankaew, S., Falab, S., Sukto, S., Sanitchon, J., Lertrat, K., & Suriharn, K. (2022). Improvement of large-seeded waxy corn (Zea mays L. var. ‘Ceratina Kulesh’) populations for food and industrial purposes. SABRAO Journal of Breeding and Genetics, 54(1), 99–112. doi:10.54910/sabrao2022.54.1.10.

Badu-Apraku, B., Bankole, F. A., Ajayo, B. S., Fakorede, M. A. B., Akinwale, R. O., Talabi, A. O., Bandyopadhyay, R., & Ortega-Beltran, A. (2021). Identification of early and extra-early maturing tropical maize inbred lines resistant to Exserohilum turcicum in sub-Saharan Africa. Crop Protection, 139, 105386. doi:10.1016/j.cropro.2020.105386.

Bankole, F. A., Badu-Apraku, B., Salami, A. O., Falade, T. D. O., Bandyopadhyay, R., & Ortega-Beltran, A. (2022). Identification of Early and Extra-Early Maturing Tropical Maize Inbred Lines with Multiple Disease Resistance for Enhanced Maize Production and Productivity in Sub-Saharan Africa. Plant Disease, 106(10), 2638–2647. doi:10.1094/PDIS-12-21-2788-RE.

Yasin, M. H. G., Isnaeni, M., Faesal, & Azrai, M. (2018). Interaction between genotypes, environment and season (G x e x S) on anthocyanin corn in lowland zone of Indonesia. IOP Conference Series: Earth and Environmental Science, 157(1). doi:10.1088/1755-1315/157/1/012045.

Butts-Wilmsmeyer, C. J., Seebauer, J. R., Singleton, L., & Below, F. E. (2019). Weather during key growth stages explains grain quality and yield of maize. Agronomy, 9(1), 1–15. doi:10.3390/agronomy9010016.

Li, Z., & Howell, S. H. (2021). Heat stress responses and thermotolerance in Maize. International Journal of Molecular Sciences, 22(2), 1–19. doi:10.3390/ijms22020948.

Adnan, A. A., Diels, J., Jibrin, J. M., Kamara, A. Y., Shaibu, A. S., Craufurd, P., & Menkir, A. (2020). CERES-Maize model for simulating genotype-by-environment interaction of maize and its stability in the dry and wet savannas of Nigeria. Field Crops Research, 253(May). doi:10.1016/j.fcr.2020.107826.

Mustamu, Y. A., Tjintokohadi, K., Grüneberg, W. J., Karuniawan, A., & Ruswandi, D. (2018). Selection of superior genotype of sweet-potato in Indonesia based on stability and adaptability. Chilean Journal of Agricultural Research, 78(4), 461–469. doi:10.4067/S0718-58392018000400461.

Poerwoko, M. S., & Sjamsijah, N. S. (2020). Eberhard-Russel Test of Stability of Several Genotypes Segregation in Five Soybeans at Centra East of Java. IOP Conference Series: Earth and Environmental Science, 411(1), 012010. doi:10.1088/1755-1315/411/1/012010.

Ye, M., Chen, Z., Liu, B., & Yue, H. (2021). Stability analysis of agronomic traits for maize (Zea mays L.) genotypes based on ammi model. Bangladesh Journal of Botany, 50(2), 343–350. doi:10.3329/BJB.V50I2.54091.

Sitaresmi, T., Suwarno, W. B., Gunarsih, C., Nugraha, Y., Sasmita, P., & Daradjat, A. A. (2019). Comprehensive stability analysis of rice genotypes through multi-location yield trials using PBSTAT-GE. SABRAO Journal of Breeding & Genetics, 51(4), 355-372.

Branković-Radojčic, D., Babić, V., Girek, Z., Tivanović, T., Radojčić, A., Filipović, M., & Srdić, J. (2018). Evaluation of maize grain yield and yield stability by AMMI analysis. Genetika, 50(3), 1067–1080. doi:10.2298/GENSR1803067B.

Ahmed, A., Hossain, A., Amiruzzaman, M., Alam, M. A., Farooq, M., Sabagh, A. E. L., & Kizilgeci, F. (2020). Evaluating short stature and high yielding maize hybrids in multiple environments using gge biplot and ammi models. Turkish Journal of Field Crops, 25(2), 216–226. doi:10.17557/tjfc.834357.

Yamamoto, E. L. M., Gonçalves, M. C., Davide, L. M. C., dos Santos, A., & Candido, L. S. (2021). Adaptability and Stability of Maize Genotypes in Growing Regions of Central Brazil. Revista Ceres, 68(3), 201–211. doi:10.1590/0034-737X202168030006.

Abid, S., & Zahid, S. (2018). Stability of maize hybrids across environments using gge biplot and ammi analysis. Asian Journal of Agriculture and Rural Development, 8(2), 188–194. doi:10.18488/JOURNAL.1005/2018.8.2/1005.2.188.194.

Golkari, S., Hagparast, R., Roohi, E., Mobasser, S., Ahmadi, M. M., Soleimani, K., & Babaei, T. (2016). Multi-environment evaluation of winter bread wheat genotypes under rainfed conditions of Iran-using AMMI model. Crop Breeding Journal, 6(2), 17–31.

Jabal, Z. K., Khayyun, T. S., & Alwan, I. A. (2022). Impact of Climate Change on Crops Productivity Using MODIS-NDVI Time Series. Civil Engineering Journal, 8(6), 1136-1156. doi:10.28991/CEJ-2022-08-06-04.

Akbar, M. R., Purwoko, B. S., Dewi, I. S., Suwarno, W. B., & Sugiyanta. (2021). Genotype × Environment Interaction and Stability Analysis for High Yielding Doubled Haploid Lines of Lowland Rice. Turkish Journal of Field Crops, 26(2), 218–225. doi:10.17557/tjfc.1033784.

Shojaei, S. H., Mostafavi, K., Omrani, A., Omrani, S., Mousavi, S. M. N., Illés, Á., Bojtor, C., & Nagy, J. (2021). Yield stability analysis of maize (Zea mays L.) hybrids using parametric and AMMI methods. Scientifica, 2021. doi:10.1155/2021/5576691.

Tena, E., Goshu, F., Mohamad, H., Tesfa, M., Tesfaye, D., & Seife, A. (2019). Genotype × environment interaction by AMMI and GGE-biplot analysis for sugar yield in three crop cycles of sugarcane (Saccharum officinirum L.) clones in Ethiopia. Cogent Food and Agriculture, 5(1), 1651925. doi:10.1080/23311932.2019.1651925.

Samyuktha, S. M., Malarvizhi, D., Karthikeyan, A., Dhasarathan, M., Hemavathy, A. T., Vanniarajan, C., Sheela, V., Hepziba, S. J., Pandiyan, M., & Senthil, N. (2020). Delineation of Genotype × Environment Interaction for Identification of Stable Genotypes to Grain Yield in Mungbean. Frontiers in Agronomy, 2(December), 1–10. doi:10.3389/fagro.2020.577911.

Hilmarsson, H. S., Rio, S., & Y Sánchez, J. I. (2021). Genotype by environment interaction analysis of agronomic spring barley traits in iceland using ammi, factorial regression model and linear mixed model. Agronomy, 11(3), 499. doi:10.3390/agronomy11030499.

Jędzura, S., Bocianowski, J., & Matysik, P. (2023). The AMMI model application to analyze the genotype–environmental interaction of spring wheat grain yield for the breeding program purposes. Cereal Research Communications, 51(1), 197–205. doi:10.1007/s42976-022-00296-9.


Full Text: PDF

DOI: 10.28991/HEF-2023-04-01-05

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Achmad Amzeri, Suhartono Suhartono, Gita Pawana, Alfian Ma’arif, Iswanto Suwarno