Parametric Assessment of Macrophytes Ecological Niches in Solving Problems of Sand Quarry Lakes Phytomelioration
Abstract
Doi: 10.28991/HEF-2022-03-04-02
Full Text: PDF
Keywords
References
Senterre, B., Lowry Ii, P. P., Bidault, E., & Stévart, T. (2021). Ecosystemology: a new approach toward a taxonomy of ecosystems. Ecological Complexity, 47, 100945. doi:10.1016/j.ecocom.2021.100945.
Hutchinson, G. E., & MacArthur, R. H. (1959). A Theoretical Ecological Model of Size Distributions among Species of Animals. The American Naturalist, 93(869), 117–125. doi:10.1086/282063.
Qi, Y., Yao, Z., Ma, X., Ding, X., Shangguan, K., Zhang, M., & Xu, N. (2022). Ecological risk assessment for organophosphate esters in the surface water from the Bohai Sea of China using multimodal species sensitivity distributions. Science of the Total Environment, 820, 153172. doi:10.1016/j.scitotenv.2022.153172.
May, R. M., & MacArthur, R. H. (1972). Niche overlap as a function of environmental variability. Proceedings of the National Academy of Sciences of the United States of America, 69(5), 1109–1113. doi:10.1073/pnas.69.5.1109.
Lin, X., Tang, Z., & Long, H. (2022). Spatial and temporal research on ecological total factor energy efficiency in China: based on “Ecology-Economy-Geography” heterogeneity framework. Journal of Cleaner Production, 377, 134143. doi:10.1016/j.jclepro.2022.134143.
Giller, P. S. (1984). Community structure and the niche. Chapman and Hall, London, United Kingdom. doi:10.1007/978-94-009-5558-5.
Bornette, G., & Puijalon, S. (2011). Response of aquatic plants to abiotic factors: A review. Aquatic Sciences, 73(1), 1–14. doi:10.1007/s00027-010-0162-7.
Nikiforenko, V. (2021). Combating Illegal Movement of Radioactive Materials and Objects across the State Border of Ukraine. Nuclear and Radiation Safety, 1(89), 30–35. doi:10.32918/nrs.2021.1(89).04.
Schoener, T. W. (1983). Field experiments on interspecific competition. American Naturalist, 122(2), 240–285. doi:10.1086/284133.
Pip, E. (1988). Niche congruency of aquatic macrophytes in central North America with respect to 5 water chemistry parameters. Hydrobiologia, 162(2), 173–182. doi:10.1007/BF00014540.
Alahuhta, J., Virtala, A., Hjort, J., Ecke, F., Johnson, L. B., Sass, L., & Heino, J. (2017). Average niche breadths of species in Lake Macrophyte communities respond to ecological gradients variably in four regions on two continents. Oecologia, 184(1), 219–235. doi:10.1007/s00442-017-3847-y.
Thomaz, S. M. (2021). Ecosystem services provided by freshwater macrophytes. Aquatic Ecosystem Services: Hydrobiologia, 1-21. doi:10.1007/s10750-021-04739-y.
Veen, H., & Sasidharan, R. (2019). Shape shifting by amphibious plants in dynamic hydrological niches. New Phytologist, 229(1), 79–84. doi:10.1111/nph.16347.
Verhoeven, M. R., Glisson, W. J., & Larkin, D. J. (2020). Niche models differentiate potential impacts of two aquatic invasive plant species on native macrophytes. Diversity, 12(4), 162. doi:10.3390/D12040162.
Gettys, L. A. (2019). Breaking bad: Native aquatic plants gone rogue and the invasive species that inspire them. HortTechnology, 29(5), 559–566. doi:10.21273/HORTTECH04333-19.
Matias, L. Q., Santos, L. I., Romero, R. E., & Menezes, B. S. (2022). Patchiness of aquatic plant assemblages in seasonal wetlands: Local abiotic factors explain the spatial distribution of growth forms. Austral Ecology, 47(7), 1495-1505. doi:10.1111/aec.13233.
DOI: 10.28991/HEF-2022-03-04-02
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Nataliia Mironova, Olesya Mateyuk, Halyna Biletska, Sergii Shevchenko, Liudmila Kazimirova, Boris Artamonov, Vasyl Kravchuk, Ihor Bloshchynskyi