Control of the Remediation of Anoxic AMD Groundwater by Sulphate Reduction in a Subsoil Reactor

Ralph Schöpke, Manja Walko

Abstract


Groundwater containing high amounts of products of pyrite weathering as a consequence of lignite mining flows into receiving waters for a number of years. Iron hydroxides causing turbidity and silting will strongly affect the river Spree for many decades. In addition to liming acidic surface waters and the conventional treating of mine waters, microbial sulphate reduction of the inflowing anoxic AMD groundwater is tested for long-term remediation. During a pilot project at Lusatia / Germany, glycerin as a carbon source and nutrient solutions of N and P are infiltrated into an anoxic AMD groundwater stream by lances. Planning and operations were carried out based on the model as proposed below.

 

Doi: 10.28991/HEF-2022-03-03-02

Full Text: PDF


Keywords


Groundwater; Acid Mine Drainage (AMD); Treatment; Biochemical Reactions.

References


Hildmann, C., Schöpke, R., Walko, M., & Mazur, K. (2016). Microbial Iron Retention in the Groundwater upstream to a River. Mining Meets Water–Conflicts and Solutions, Proceedings IMWA 2016, Freiberg, Germany, 944-951.

Hildmann, C., Rösel, L., Zimmermann, B., Knoche, D., Hartung, W. D., & Benthaus, F. C. (2016). Reduction of seepage outflow from potash tailings piles by improvement of greening: results of a hydrological simulation. Mining Meets Water, Leipzig, 772-779.

Hildmann, C., Rösel, L., Zimmermann, B., Knoche, D., & Haubold-Rosar, M. (2021). The Impact of Afforestation on Seepage Water Formation on Post-mining Spoil Heaps and Dumps-Results of Water Balance Modeling. In Proceedings of the International Conference on Innovations for Sustainable and Responsible Mining, Springer, Cham, Switzerland.

Schöpke, R.; Walko, M.; Regel, R.; Thürmer, K. (2020). Bemessung der mikrobiellen Sulfatreduktion zur Behandlung von pyritverwitterungsbeeinträchtigten Grundwasserströmen - Ergebnis eines Demonstrationsversuches am Standort Ruhlmühle; Schriftenreihe Siedlungswasserwirtschaft und Umwelt, Senftenberg, Germany. Available online: https://www-docs.b-tu.de/fg-wassertechnik/public/Publikationen/Schriftenreihe/Heft27.pdf. (accessed on May 2022).

Schopke, R. K. R., Mangold, S. P. V., & Regel, R. S. A. (2006). Experimental Development and Testing of an in-Situ Technology to Reduce the Acidity of AMD-laden Groundwater in the Aquifer. Grundwasser, 11(4), 270-275.

Schöpke, R., Walko, M., & Thürmer, K. (2021). Process for the Subsoil Treatment of Acidified Groundwater through Microbial Sulfate Reduction. IMWA 2021 –Mine Water Management for Future Generations, Cardiff, Wales, United Kingdom.

Skousen, J. G., Ziemkiewicz, P. F., & McDonald, L. M. (2019). Acid mine drainage formation, control and treatment: Approaches and strategies. The Extractive Industries and Society, 6(1), 241-249. doi:10.1016/j.exis.2018.09.008.

Preuß, V. (2004). Entwicklung eines biochemischen Verfahrens zur Aufbereitung sulfathaltiger Wässer am Beispiel der Entsäuerung schwefelsaurer Tagebaurestseen. Schriftenreihe Siedlungswasserwirtschaft und Umwelt, Senftenberg, Germany. Available online: https://www-docs.b-tu.de/fg-wassertechnik/public/Publikationen/Schriftenreihe/Heft_9.pdf (accessed on May 2022).

Koch, R., Schöpke, R., Mangold, S., Regel R., Striemann, A. (2006). Entwicklung und Erprobung eines Verfahrens zur Untergrundentsäuerung von Kippengrundwässern. Schriftenreihe Siedlungswasserwirtschaft und Umwelt, Germany. Available online: https://www-docs.b-tu.de/fg-wassertechnik/public/Publikationen/Schriftenreihe/Heft11.pdf. (accessed on May 2022).

Schöpke, R., Gast, M., Walko, M., Regel, R., Koch, R., & Thürmer, K. (2011). Wissenschaftliche Auswertung von Sanierungsversuchen zur Untergrundsulfatreduktion im ehemaligen Lausitzer Bergbaurevier. Schriftenreihe Siedlungswasserwirtschaft und Umwelt, Senftenberg, Germany. Available online: https://www-docs.b-tu.de/fg-wassertechnik/ public/Publikationen/Schriftenreihe/Heft21.pdf (accessed on May 2022).

Ye, Y., Xu, Z., Zhu, G., & Cao, C. (2022). A modification of the Kozeny–Carman equation based on soil particle size distribution. Arabian Journal of Geosciences, 15(11), 1-10. doi:10.1007/s12517-022-10224-0.

Nomura, S., Yamamoto, Y., & Sakaguchi, H. (2018). Modified expression of Kozeny–Carman equation based on semilog–sigmoid function. Soils and Foundations, 58(6), 1350-1357. doi:10.1016/j.sandf.2018.07.011.

Skousen, J., Rose, A., Geidel, G., Foreman, J., Evans, R., & Hellier, W. (1998). Handbook of technologies for avoidance and remediation of acid mine drainage. National Mine Land Reclamation Center, Morgantown, Virginia, United States.

Skousen, J., Zipper, C. E., Rose, A., Ziemkiewicz, P. F., Nairn, R., McDonald, L. M., & Kleinmann, R. L. (2017). Review of passive systems for acid mine drainage treatment. Mine Water and the Environment, 36(1), 133-153. doi:10.1007/s10230-016-0417-1.


Full Text: PDF

DOI: 10.28991/HEF-2022-03-03-02

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Ralph Schöpke