Theoretical Issues with Rayleigh Surface Waves and Geoelectrical Method Used for the Inversion of Near Surface Geophysical Structure

Özcan Çakır, Nart Coşkun

Abstract


We numerically simulate the field measurements of Rayleigh surface waves and electrical resistivity in which the target depth is set to be less than 50 m. Rayleigh surface waves are simulated in terms of fundamental mode group and phase velocities. The seismic field data is assumed to be collected through a conventional shot-gather. The group velocities are found from the application of the multiple filter technique in a single-station fashion while for the phase velocities the slant stacking, or linear radon transform are applied in fashion of multichannel analysis of surface waves (MASW). The average seismic structure from the source to the receiver (or geophone) is represented by the group velocity curve, while the average seismic structure underneath the geophone array is represented by the phase velocity curve. The single-station group velocity curves are transformed into local group velocity curves by setting a linear system through grid points. The shear-wave velocity cross section underneath the examined area is constructed by inverting these local group velocity curves. The electrical resistivity structure of the underground is similarly studied. The field compilation of the resistivity data is assumed to be completed by the application of the multiple electrode Pole-Pole array. The actual resistivity assemble underneath the analyzed area is inverted by considering the apparent (measured) resistivity values. Unique forms such as ore body, cavity, sinkhole, melt, salt, and fluid within the Earth may be examined by joint interpretation of electrical resistivities and seismic velocities. These formations may be better outlined by following their distinct signs, such as high/low resistivities and high/low seismic velocities.

 

Doi: 10.28991/HEF-2021-02-03-01

Full Text: PDF


Keywords


Electrical Resistivity; Group Velocity; Near Surface; Phase Velocity; Rayleigh Surface Waves.

References


Borcherdt, R. D. (2012). VS30 – A Site-Characterization Parameter for Use in Building Codes, Simplified Earthquake Resistant Design, GMPEs, and ShakeMaps. Proceedings - 2012 IEEE International Conference on Technology Enhanced Education, ICTEE 2012, Lisbon, Portugal.

Thitimakorn, T., & Raenak, T. (2016). NEHRP Site Classification and Preliminary Soil Amplification Maps of Lamphun City, Northern Thailand. Open Geosciences, 8(1), 538–547. doi:10.1515/geo-2016-0046.

Hollender, F., Cornou, C., Dechamp, A., Oghalaei, K., Renalier, F., Maufroy, E., … Sicilia, D. (2017). Characterization of site conditions (soil class, VS30, velocity profiles) for 33 stations from the French permanent accelerometric network (RAP) using surface-wave methods. Bulletin of Earthquake Engineering, 16(6), 2337–2365. doi:10.1007/s10518-017-0135-5.

Aki, K., Richards, P.G., (1980). Quantitative Seismology: Theory and Methods, San Francisco, California, United States.

Šumanovac, F., & Weisser, M. (2001). Evaluation of resistivity and seismic methods for hydrogeological mapping in karst terrains. Journal of Applied Geophysics, 47(1), 13–28. doi:10.1016/S0926-9851(01)00044-1.

Musa, A. A., Ben-Awuah, J., Saad, R., & Andriamihaja, S. (2017). Combined use of 2D electrical resistivity and seismic refraction in hydrogeophysical exploration. Petroleum and Coal, 59(1), 01–09.

Meng, F., Zhang, G., Qi, Y., Zhou, Y., Zhao, X., & Ge, K. (2020). Application of combined electrical resistivity tomography and seismic reflection method to explore hidden active faults in Pingwu, Sichuan, China. Open Geosciences, 12(1), 174–189. doi:10.1515/geo-2020-0040.

Cardarelli, E., Cercato, M., Cerreto, A., & Di Filippo, G. (2010). Electrical resistivity and seismic refraction tomography to detect buried cavities. Geophysical Prospecting, 58(4), 685–695. doi:10.1111/j.1365-2478.2009.00854.x.

Fernández-Baniela, F., Arias, D., & Rubio-Ordóñez, Á. (2021). Seismic refraction and electrical resistivity tomographies for geotechnical site characterization of two water reservoirs (El Hierro, Spain). Near Surface Geophysics, 19(2), 199–223. doi:10.1002/nsg.12152.

Crook, N., Binley, A., Knight, R., Robinson, D. A., Zarnetske, J., & Haggerty, R. (2008). Electrical resistivity imaging of the architecture of sub-stream sediments. Water Resources Research, 46(4), 00 13. doi:10.1029/2008WR006968.

Antonio-Carpio, R., Romo, J. M., Frez, J., Gómez-Treviño, E., & Suárez-Vidal, F. (2011). Electrical resistivity imaging of a seismic region in northern Baja California, Mexico. Geofisica Internacional, 50(1), 23–39. doi:10.22201/igeof.00167169p.2011.50.1.120.

Coşkun, N., Çakır, Ö., Erduran, M., Kutlu, Y. A., & Yalçın, A. (2016). Preliminary investigation of underground settlements of Nevşehir Castle region using 2.5-D electrical resistivity tomography: Cappadocia, Turkey. Arabian Journal of Geosciences, 9(18), 717. doi:10.1007/s12517-016-2727-9.

Coşkun, N., Çakır, Ö., Erduran, M., Kutlu, Y. A., & Çetiner, Z. S. (2016). A potential landslide area investigated by 2.5D electrical resistivity tomography: case study from Çanakkale, Turkey. Arabian Journal of Geosciences, 9(1), 1–20. doi:10.1007/s12517-015-2026-x.

Kowalczyk, S., Zawrzykraj, P., & Maślakowski, M. (2017). Application of the electrical resistivity method in assessing soil for the foundation of bridge structures: A case study from the Warsaw environs, Poland. Acta Geodynamica et Geomaterialia, 14(2), 221–234. doi:10.13168/AGG.2017.0005.

Issah, M. M., Aning, A. A., Noye, R. M., & Mainoo, P. A. (2018). Prospecting for Groundwater Using the Continuous Vertical Electrical Sounding Method. European Scientific Journal, ESJ, 14(3), 67. doi:10.19044/esj.2018.v14n3p67.

Socco, L. V., & Strobbia, C. (2004). Surface-wave method for near-surface characterization: a tutorial. Near Surface Geophysics, 2(4), 165–185. doi:10.3997/1873-0604.2004015.

Khaheshi Banab, K., & Motazedian, D. (2010). On the efficiency of the multi-channel analysis of surface wave method for shallow and semi-deep loose soil layers. International Journal of Geophysics, 2010, 1–13. doi:10.1155/2010/403016.

Bitri, A., Samyn, K., Brûlé, S., & Javelaud, E. H. (2013). Assessment of ground compaction using multi-channel analysis of surface wave data and cone penetration tests. Near Surface Geophysics, 11(6), 683–690. doi:10.3997/1873-0604.2013037.

Martínez-Pagán, P., Navarro, M., Pérez-Cuevas, J., Alcalá, F. J., García-Jerez, A., & Sandoval-Castaño, S. (2014). Shear-wave velocity based seismic microzonation of Lorca city (SE Spain) from MASW analysis. Near Surface Geophysics, 12(6), 739–749. doi:10.3997/1873-0604.2014032.

Gao, L., Pan, Y., Tian, G., & Xia, J. (2018). Estimating Q Factor from Multi-mode Shallow-Seismic Surface Waves. Pure and Applied Geophysics, 175(8), 2609–2622. doi:10.1007/s00024-018-1828-7.

Dal Moro, G. (2019). Surface wave analysis: Improving the accuracy of the shear-wave velocity profile through the efficient joint acquisition and Full Velocity Spectrum (FVS) analysis of Rayleigh and Love waves. Exploration Geophysics, 50(4), 408–419. doi:10.1080/08123985.2019.1606202.

Tufekci, S. (2009). Combined Surface-Wave and Resistivity Imaging for Shallow Subsurface Characterization (Issue August), Master’s Thesis, Ohio University, Ohio, United States.

Ronczka, M., Hellman, K., Günther, T., Wisén, R., & Dahlin, T. (2017). Electric resistivity and seismic refraction tomography: A challenging joint underwater survey at Äspö Hard Rock Laboratory. Solid Earth, 8(3), 671–682. doi:10.5194/se-8-671-2017.

Akingboye, A. S., & Ogunyele, A. C. (2019). Insight into seismic refraction and electrical resistivity tomography techniques in subsurface investigations. Rudarsko Geolosko Naftni Zbornik, 34(1), 93–111. doi:10.17794/rgn.2019.1.9.

Çakır, Ö., Coşkun, N., & Erduran, M. (2019). Nevşehir Castle Region in Turkey Interpreted by the Use of Seismic Surface Wave and Electrical Resistance Measurements Together. Pakistan Journal of Geology, 3(2), 9–19. doi:10.2478/pjg-2019-0007.

Whiteley, J. S., Watlet, A., Uhlemann, S., Wilkinson, P., Boyd, J. P., Jordan, C., Kendall, J. M., & Chambers, J. E. (2021). Rapid characterisation of landslide heterogeneity using unsupervised classification of electrical resistivity and seismic refraction surveys. Engineering Geology, 290, 106189. doi:10.1016/j.enggeo.2021.106189.

Xia, J., Miller, R. D., & Park, C. B. (1999). Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics, 64(3), 691–700. doi:10.1190/1.1444578.

Park, C. B., Ivanov, J., Miller, R. D., Xia, J., & Ryden, N. (2001). Seismic Investigation of Pavements by MASW Method –Geophone Approach. Proc. SAGEEP 2001, RBA6–RBA6. doi:10.4133/1.2922938.

Yuan, J., Zhu, J., & Kim, C. (2014). Comparison of SASW and MASW methods using MSOR approach - A case study. International Journal of Geotechnical Engineering, 8(2), 233–238. doi:10.1179/1938636213Z.00000000077.

Cox, B. R., & Beekman, A. N. (2011). Intramethod Variability in ReMi Dispersion Measurements and Vs. Estimates at Shallow Bedrock Sites. Journal of Geotechnical and Geoenvironmental Engineering, 137(4), 354–362. doi:10.1061/(asce)gt.1943-5606.0000436.

Cheng, F., Xia, J., Xu, Z., Hu, Y., & Mi, B. (2018). Frequency–Wavenumber (FK)-Based Data Selection in High-Frequency Passive Surface Wave Survey. Surveys in Geophysics, 39(4), 661–682. doi:10.1007/s10712-018-9473-3.

Erduran, M., Çakir, Ö., Tezel, T., Şahin, Ş., & Alptekin, Ö. (2007). Anatolian surface wave evaluated at GEOFON Station ISP Isparta, Turkey. Tectonophysics, 434(1–4), 39–54. doi:10.1016/j.tecto.2007.02.005.

Keranen, K. M., Klemperer, S. L., Julia, J., Lawrence, J. F., & Nyblade, A. A. (2009). Low lower crustal velocity across Ethiopia: Is the Main Ethiopian Rift a narrow rift in a hot craton? Geochemistry, Geophysics, Geosystems, 10(5), 0 01. doi:10.1029/2008GC002293.

Çakır, Ö. (2019). Love and Rayleigh waves inverted for vertical transverse isotropic crust structure beneath the Biga Peninsula and the surrounding area in NW Turkey. Geophysical Journal International, 216(3), 2081–2105. doi:10.1093/gji/ggy538.

Tang, Z., Mai, P. M., Julià, J., & Zahran, H. (2019). Shear Velocity Structure beneath Saudi Arabia from the Joint Inversion of P and S Wave Receiver Functions, and Rayleigh Wave Group Velocity Dispersion Data. Journal of Geophysical Research: Solid Earth, 124(5), 4767–4787. doi:10.1029/2018JB017131.

Simutė, S., Steptoe, H., Cobden, L., Gokhberg, A., & Fichtner, A. (2016). Full-waveform inversion of the Japanese Islands region. Journal of Geophysical Research: Solid Earth, 121(5), 3722–3741. doi:10.1002/2016JB012802.

Shapiro, N. M., Singh, S. K., Almora, D., & Ayala, M. (2001). Evidence of the dominance of higher-mode surface waves in the lake-bed zone of the Valley of Mexico. Geophysical Journal International, 147(3), 517–527. doi:10.1046/j.0956-540x.2001.01508.x.

Xu, H., & Beghein, C. (2019). Measuring higher mode surface wave dispersion using a transdimensional Bayesian approach. Geophysical Journal International, 218(1), 333–353. doi:10.1093/gji/ggz133.

McMechan, G. A., & Yedlin, M. J. (1981). Analysis of dispersive waves by wave field transformation. Geophysics, 46(6), 869–874. doi:10.1190/1.1441225.

Mokhtar, T. A., Herrmann, R. B., & Russell, D. R. (1988). Seismic velocity and Q model for the shallow structure of the Arabian shield from short-period Rayleigh waves. Geophysics, 53(11), 1379–1387. doi:10.1190/1.1442417.

Herrmann, R. B., & Ammon, C. J. (2002). Computer programs in seismology version 3.20: Surface waves, receiver functions, and crustal structure. Louis University, Missouri, United States.

Luo, Y., Xia, J., Miller, R. D., Xu, Y., Liu, J., & Liu, Q. (2008). Rayleigh-wave dispersive energy imaging using a high-resolution linear radon transform. Pure and Applied Geophysics, 165(5), 903–922. doi:10.1007/s00024-008-0338-4.

Dziewonski A, Bloch S, & Landisman M. (1969). Technique for the Analysis of Transient Seismic Signals. Bulletin of the Seismological Society of America, 59(1), 427–444. doi:10.1785/bssa0590010427.

Herrmann, R. B. (1973). Some aspects of band-pass filtering of surface waves. Bulletin of the Seismological Society of America, 63(2), 663–671. doi:10.1785/bssa0630020663.

Cho, K.-H., & LEE, K. (2006). Dispersion of Rayleigh Waves in the Korean Peninsula. Journal of the Korean Geophysical Society, 9(3), 231–240.

Corchete, V., Chourak, M., & Hussein, H. M. (2007). Shear wave velocity structure of the Sinai Peninsula from Rayleigh wave analysis. Surveys in Geophysics, 28(4), 299–324. doi:10.1007/s10712-007-9027-6.

Çinar, H., & Alkan, H. (2015). Crustal Structure of Eastern Anatolia from Single-Station Rayleigh Wave Group Velocities. Eastern Anatolian Journal of Science, I, 57–69.

Kumar, A., Kumar, N., & Mukhopadhyay, S. (2018). Investigation of azimuthal variation in seismic surface waves group velocity in the western part of Himalaya-Tibet Indo-Gangetic plains region. Himalayan Geology, 39(1), 33–46.

Ouattara, Y., Zigone, D., & Maggi, A. (2019). Rayleigh wave group velocity dispersion tomography of West Africa using regional earthquakes and ambient seismic noise. Journal of Seismology, 23(6), 1201–1221. doi:10.1007/s10950-019-09860-z.

Coşkun, N. (2009). Nondestructive Electrical Resistivity Method to Map the Drainage System of Football Playgrounds. Journal of Performance of Constructed Facilities, 23(5), 303–308. doi:10.1061/(asce)cf.1943-5509.0000037.

Milsom, J., (2003). Field Geophysics, The Geological Field Guide Series, Third Edition, Willey, England.

Octova, A., & Yulhendra, D. (2017). Iron ore deposits model using geoelectrical resistivity method with dipole-dipole array. MATEC Web of Conferences, 101, 4017. doi:10.1051/matecconf/201710104017.

Palacky, G. Resistivity characteristics of geologic targets. Electromagnetic Methods in Applied Geophysics, 1, 53–129.

Cardarelli, E., & De Donno, G. (2017). Multidimensional electrical resistivity survey for bedrock detection at the Rieti Plain (Central Italy). Journal of Applied Geophysics, 141, 77–87. doi:10.1016/j.jappgeo.2017.04.012.

Stummer, P., Maurer, H., Horstmeyer, H., & Green, A. G. (2002). Optimization of DC resistivity data acquisition: Real-time experimental design and a new multielectrode system. IEEE Transactions on Geoscience and Remote Sensing, 40(12), 2727–2735. doi:10.1109/TGRS.2002.807015.

Colella, A., Lapenna, V., & Rizzo, E. (2004). High-resolution imaging of the High Agri Valley Basin (Southern Italy) with electrical resistivity tomography. Tectonophysics, 386(1–2), 29–40. doi:10.1016/j.tecto.2004.03.017.

Loke, M.H., (1997). Electrical imaging surveys for environmental and engineering studies, a practical guide to 2-D and 3-D surveys: RES2DINVand RES2MOD Manual, Penang, Malaysia.

Orlando, L. (2013). Some considerations on electrical resistivity imaging for characterization of waterbed sediments. Journal of Applied Geophysics, 95, 77–89. doi:10.1016/j.jappgeo.2013.05.005.

Poblet, J., & Lisle, R. J. (2011). Kinematic evolution and structural styles of fold-and-thrust belts. Geological Society Special Publication, 349, 1–24. doi:10.1144/SP349.1.

Roche, V., Childs, C., Madritsch, H., & Camanni, G. (2020). Layering and structural inheritance controls on fault zone structure in three dimensions: A case study from the northern Molasse basin, Switzerland. Journal of the Geological Society, 177(3), 493–508. doi:10.1144/jgs2019-052.

Kumar, D., Mondal, S., Nandan, M. J., Harini, P., Sekhar, B. M. V. S., & Sen, M. K. (2016). Two-dimensional electrical resistivity tomography (ERT) and time-domain-induced polarization (TDIP) study in hard rock for groundwater investigation: a case study at Choutuppal Telangana, India. Arabian Journal of Geosciences, 9(5), 355. doi:10.1007/s12517-016-2382-1.

Keçeli, A. (2012). Soil Parameters Which Can Be Determined With Seismic Velocities. Jeofizik, 16(16), 17–29. doi:11.a02/jeofizik-1011-31.

Levshin, A. L., & Panza, G. F. (2006). Caveats in multi-modal inversion of seismic surface wavefields. Pure and Applied Geophysics, 163(7), 1215–1233. doi:10.1007/s00024-006-0069-3.

Gao, L., Xia, J., Pan, Y., & Xu, Y. (2016). Reason and Condition for Mode Kissing in MASW Method. Pure and Applied Geophysics, 173(5), 1627–1638. doi:10.1007/s00024-015-1208-5.

Ojo, A. O., Ni, S., & Li, Z. (2017). Crustal radial anisotropy beneath Cameroon from ambient noise tomography. Tectonophysics, 696–697, 37–51. doi:10.1016/j.tecto.2016.12.018.

Nishida, K., Kawakatsu, H., & Obara, K. (2008). Three-dimensional crustal S wave velocity structure in Japan using microseismic data recorded by Hi-net tiltmeters. Journal of Geophysical Research: Solid Earth, 113(10). doi:10.1029/2007JB005395.

Jin, G., & Gaherty, J. B. (2015). Surface wave phase-velocity tomography based on multichannel cross-correlation. Geophysical Journal International, 201(3), 1383–1398. doi:10.1093/gji/ggv079.

Çakır, Ö. (2018). Seismic crust structure beneath the Aegean region in southwest Turkey from radial anisotropic inversion of Rayleigh and Love surface waves. Acta Geophysica, 66(6), 1303–1340. doi:10.1007/s11600-018-0223-1.

Wang, Y., & Pavlis, G. L. (2016). Generalized iterative deconvolution for receiver function estimation. Geophysical Journal International, 204(2), 1086–1099. doi:10.1093/gji/ggv503.

Young, M. K., Rawlinson, N., Arroucau, P., Reading, A. M., & Tkalčič, H. (2011). High-frequency ambient noise tomography of southeast Australia: New constraints on Tasmania’s tectonic past. Geophysical Research Letters, 38(13), 13313. doi:10.1029/2011GL047971.

Loke, M.H., (2014). RES2DMOD ver. 3.01: Rapid 2D resistivity forward modeling using the finite-difference and finite-element methods, Geotomo Software, Penang, Malaysia.

Loke, D. M. (2002). Electrical imaging surveys for environmental and engineering studies - A practical guide to 2-D and 3-D surveys Copyright. In Cangkat Minden Lorong, Penang, Malaysia.

Loke, M.H., (2004). Tutorial: 2-D and 3-D electrical imaging surveys, Geotomo Software, Penang, Malaysia.

Loke, M. H., & Barker, R. D. (1996). Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophysical Prospecting, 44(1), 131–152. doi:10.1111/j.1365-2478.1996.tb00142.x.

Dal Moro, G. (2020). The magnifying effect of a thin shallow stiff layer on Love waves as revealed by multi-component analysis of surface waves. Scientific Reports, 10(1), 9071. doi:10.1038/s41598-020-66070-1.

Iwamori, H., Ueki, K., Hoshide, T., Sakuma, H., Ichiki, M., Watanabe, T., … Takahashi, E. (2021). Simultaneous Analysis of Seismic Velocity and Electrical Conductivity in the Crust and the Uppermost Mantle: A Forward Model and Inversion Test Based on Grid Search. Journal of Geophysical Research: Solid Earth, 126(9). doi:10.1029/2021jb022307.


Full Text: PDF

DOI: 10.28991/HEF-2021-02-03-01

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Özcan Çakır, Nart Coşkun