Theoretical Issues with Rayleigh Surface Waves and Geoelectrical Method Used for the Inversion of Near Surface Geophysical Structure
Abstract
Doi: 10.28991/HEF-2021-02-03-01
Full Text: PDF
Keywords
References
Borcherdt, R. D. (2012). VS30 – A Site-Characterization Parameter for Use in Building Codes, Simplified Earthquake Resistant Design, GMPEs, and ShakeMaps. Proceedings - 2012 IEEE International Conference on Technology Enhanced Education, ICTEE 2012, Lisbon, Portugal.
Thitimakorn, T., & Raenak, T. (2016). NEHRP Site Classification and Preliminary Soil Amplification Maps of Lamphun City, Northern Thailand. Open Geosciences, 8(1), 538–547. doi:10.1515/geo-2016-0046.
Hollender, F., Cornou, C., Dechamp, A., Oghalaei, K., Renalier, F., Maufroy, E., … Sicilia, D. (2017). Characterization of site conditions (soil class, VS30, velocity profiles) for 33 stations from the French permanent accelerometric network (RAP) using surface-wave methods. Bulletin of Earthquake Engineering, 16(6), 2337–2365. doi:10.1007/s10518-017-0135-5.
Aki, K., Richards, P.G., (1980). Quantitative Seismology: Theory and Methods, San Francisco, California, United States.
Šumanovac, F., & Weisser, M. (2001). Evaluation of resistivity and seismic methods for hydrogeological mapping in karst terrains. Journal of Applied Geophysics, 47(1), 13–28. doi:10.1016/S0926-9851(01)00044-1.
Musa, A. A., Ben-Awuah, J., Saad, R., & Andriamihaja, S. (2017). Combined use of 2D electrical resistivity and seismic refraction in hydrogeophysical exploration. Petroleum and Coal, 59(1), 01–09.
Meng, F., Zhang, G., Qi, Y., Zhou, Y., Zhao, X., & Ge, K. (2020). Application of combined electrical resistivity tomography and seismic reflection method to explore hidden active faults in Pingwu, Sichuan, China. Open Geosciences, 12(1), 174–189. doi:10.1515/geo-2020-0040.
Cardarelli, E., Cercato, M., Cerreto, A., & Di Filippo, G. (2010). Electrical resistivity and seismic refraction tomography to detect buried cavities. Geophysical Prospecting, 58(4), 685–695. doi:10.1111/j.1365-2478.2009.00854.x.
Fernández-Baniela, F., Arias, D., & Rubio-Ordóñez, Á. (2021). Seismic refraction and electrical resistivity tomographies for geotechnical site characterization of two water reservoirs (El Hierro, Spain). Near Surface Geophysics, 19(2), 199–223. doi:10.1002/nsg.12152.
Crook, N., Binley, A., Knight, R., Robinson, D. A., Zarnetske, J., & Haggerty, R. (2008). Electrical resistivity imaging of the architecture of sub-stream sediments. Water Resources Research, 46(4), 00 13. doi:10.1029/2008WR006968.
Antonio-Carpio, R., Romo, J. M., Frez, J., Gómez-Treviño, E., & Suárez-Vidal, F. (2011). Electrical resistivity imaging of a seismic region in northern Baja California, Mexico. Geofisica Internacional, 50(1), 23–39. doi:10.22201/igeof.00167169p.2011.50.1.120.
Coşkun, N., Çakır, Ö., Erduran, M., Kutlu, Y. A., & Yalçın, A. (2016). Preliminary investigation of underground settlements of Nevşehir Castle region using 2.5-D electrical resistivity tomography: Cappadocia, Turkey. Arabian Journal of Geosciences, 9(18), 717. doi:10.1007/s12517-016-2727-9.
Coşkun, N., Çakır, Ö., Erduran, M., Kutlu, Y. A., & Çetiner, Z. S. (2016). A potential landslide area investigated by 2.5D electrical resistivity tomography: case study from Çanakkale, Turkey. Arabian Journal of Geosciences, 9(1), 1–20. doi:10.1007/s12517-015-2026-x.
Kowalczyk, S., Zawrzykraj, P., & Maślakowski, M. (2017). Application of the electrical resistivity method in assessing soil for the foundation of bridge structures: A case study from the Warsaw environs, Poland. Acta Geodynamica et Geomaterialia, 14(2), 221–234. doi:10.13168/AGG.2017.0005.
Issah, M. M., Aning, A. A., Noye, R. M., & Mainoo, P. A. (2018). Prospecting for Groundwater Using the Continuous Vertical Electrical Sounding Method. European Scientific Journal, ESJ, 14(3), 67. doi:10.19044/esj.2018.v14n3p67.
Socco, L. V., & Strobbia, C. (2004). Surface-wave method for near-surface characterization: a tutorial. Near Surface Geophysics, 2(4), 165–185. doi:10.3997/1873-0604.2004015.
Khaheshi Banab, K., & Motazedian, D. (2010). On the efficiency of the multi-channel analysis of surface wave method for shallow and semi-deep loose soil layers. International Journal of Geophysics, 2010, 1–13. doi:10.1155/2010/403016.
Bitri, A., Samyn, K., Brûlé, S., & Javelaud, E. H. (2013). Assessment of ground compaction using multi-channel analysis of surface wave data and cone penetration tests. Near Surface Geophysics, 11(6), 683–690. doi:10.3997/1873-0604.2013037.
Martínez-Pagán, P., Navarro, M., Pérez-Cuevas, J., Alcalá, F. J., García-Jerez, A., & Sandoval-Castaño, S. (2014). Shear-wave velocity based seismic microzonation of Lorca city (SE Spain) from MASW analysis. Near Surface Geophysics, 12(6), 739–749. doi:10.3997/1873-0604.2014032.
Gao, L., Pan, Y., Tian, G., & Xia, J. (2018). Estimating Q Factor from Multi-mode Shallow-Seismic Surface Waves. Pure and Applied Geophysics, 175(8), 2609–2622. doi:10.1007/s00024-018-1828-7.
Dal Moro, G. (2019). Surface wave analysis: Improving the accuracy of the shear-wave velocity profile through the efficient joint acquisition and Full Velocity Spectrum (FVS) analysis of Rayleigh and Love waves. Exploration Geophysics, 50(4), 408–419. doi:10.1080/08123985.2019.1606202.
Tufekci, S. (2009). Combined Surface-Wave and Resistivity Imaging for Shallow Subsurface Characterization (Issue August), Master’s Thesis, Ohio University, Ohio, United States.
Ronczka, M., Hellman, K., Günther, T., Wisén, R., & Dahlin, T. (2017). Electric resistivity and seismic refraction tomography: A challenging joint underwater survey at Äspö Hard Rock Laboratory. Solid Earth, 8(3), 671–682. doi:10.5194/se-8-671-2017.
Akingboye, A. S., & Ogunyele, A. C. (2019). Insight into seismic refraction and electrical resistivity tomography techniques in subsurface investigations. Rudarsko Geolosko Naftni Zbornik, 34(1), 93–111. doi:10.17794/rgn.2019.1.9.
Çakır, Ö., Coşkun, N., & Erduran, M. (2019). Nevşehir Castle Region in Turkey Interpreted by the Use of Seismic Surface Wave and Electrical Resistance Measurements Together. Pakistan Journal of Geology, 3(2), 9–19. doi:10.2478/pjg-2019-0007.
Whiteley, J. S., Watlet, A., Uhlemann, S., Wilkinson, P., Boyd, J. P., Jordan, C., Kendall, J. M., & Chambers, J. E. (2021). Rapid characterisation of landslide heterogeneity using unsupervised classification of electrical resistivity and seismic refraction surveys. Engineering Geology, 290, 106189. doi:10.1016/j.enggeo.2021.106189.
Xia, J., Miller, R. D., & Park, C. B. (1999). Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics, 64(3), 691–700. doi:10.1190/1.1444578.
Park, C. B., Ivanov, J., Miller, R. D., Xia, J., & Ryden, N. (2001). Seismic Investigation of Pavements by MASW Method –Geophone Approach. Proc. SAGEEP 2001, RBA6–RBA6. doi:10.4133/1.2922938.
Yuan, J., Zhu, J., & Kim, C. (2014). Comparison of SASW and MASW methods using MSOR approach - A case study. International Journal of Geotechnical Engineering, 8(2), 233–238. doi:10.1179/1938636213Z.00000000077.
Cox, B. R., & Beekman, A. N. (2011). Intramethod Variability in ReMi Dispersion Measurements and Vs. Estimates at Shallow Bedrock Sites. Journal of Geotechnical and Geoenvironmental Engineering, 137(4), 354–362. doi:10.1061/(asce)gt.1943-5606.0000436.
Cheng, F., Xia, J., Xu, Z., Hu, Y., & Mi, B. (2018). Frequency–Wavenumber (FK)-Based Data Selection in High-Frequency Passive Surface Wave Survey. Surveys in Geophysics, 39(4), 661–682. doi:10.1007/s10712-018-9473-3.
Erduran, M., Çakir, Ö., Tezel, T., Şahin, Ş., & Alptekin, Ö. (2007). Anatolian surface wave evaluated at GEOFON Station ISP Isparta, Turkey. Tectonophysics, 434(1–4), 39–54. doi:10.1016/j.tecto.2007.02.005.
Keranen, K. M., Klemperer, S. L., Julia, J., Lawrence, J. F., & Nyblade, A. A. (2009). Low lower crustal velocity across Ethiopia: Is the Main Ethiopian Rift a narrow rift in a hot craton? Geochemistry, Geophysics, Geosystems, 10(5), 0 01. doi:10.1029/2008GC002293.
Çakır, Ö. (2019). Love and Rayleigh waves inverted for vertical transverse isotropic crust structure beneath the Biga Peninsula and the surrounding area in NW Turkey. Geophysical Journal International, 216(3), 2081–2105. doi:10.1093/gji/ggy538.
Tang, Z., Mai, P. M., Julià, J., & Zahran, H. (2019). Shear Velocity Structure beneath Saudi Arabia from the Joint Inversion of P and S Wave Receiver Functions, and Rayleigh Wave Group Velocity Dispersion Data. Journal of Geophysical Research: Solid Earth, 124(5), 4767–4787. doi:10.1029/2018JB017131.
Simutė, S., Steptoe, H., Cobden, L., Gokhberg, A., & Fichtner, A. (2016). Full-waveform inversion of the Japanese Islands region. Journal of Geophysical Research: Solid Earth, 121(5), 3722–3741. doi:10.1002/2016JB012802.
Shapiro, N. M., Singh, S. K., Almora, D., & Ayala, M. (2001). Evidence of the dominance of higher-mode surface waves in the lake-bed zone of the Valley of Mexico. Geophysical Journal International, 147(3), 517–527. doi:10.1046/j.0956-540x.2001.01508.x.
Xu, H., & Beghein, C. (2019). Measuring higher mode surface wave dispersion using a transdimensional Bayesian approach. Geophysical Journal International, 218(1), 333–353. doi:10.1093/gji/ggz133.
McMechan, G. A., & Yedlin, M. J. (1981). Analysis of dispersive waves by wave field transformation. Geophysics, 46(6), 869–874. doi:10.1190/1.1441225.
Mokhtar, T. A., Herrmann, R. B., & Russell, D. R. (1988). Seismic velocity and Q model for the shallow structure of the Arabian shield from short-period Rayleigh waves. Geophysics, 53(11), 1379–1387. doi:10.1190/1.1442417.
Herrmann, R. B., & Ammon, C. J. (2002). Computer programs in seismology version 3.20: Surface waves, receiver functions, and crustal structure. Louis University, Missouri, United States.
Luo, Y., Xia, J., Miller, R. D., Xu, Y., Liu, J., & Liu, Q. (2008). Rayleigh-wave dispersive energy imaging using a high-resolution linear radon transform. Pure and Applied Geophysics, 165(5), 903–922. doi:10.1007/s00024-008-0338-4.
Dziewonski A, Bloch S, & Landisman M. (1969). Technique for the Analysis of Transient Seismic Signals. Bulletin of the Seismological Society of America, 59(1), 427–444. doi:10.1785/bssa0590010427.
Herrmann, R. B. (1973). Some aspects of band-pass filtering of surface waves. Bulletin of the Seismological Society of America, 63(2), 663–671. doi:10.1785/bssa0630020663.
Cho, K.-H., & LEE, K. (2006). Dispersion of Rayleigh Waves in the Korean Peninsula. Journal of the Korean Geophysical Society, 9(3), 231–240.
Corchete, V., Chourak, M., & Hussein, H. M. (2007). Shear wave velocity structure of the Sinai Peninsula from Rayleigh wave analysis. Surveys in Geophysics, 28(4), 299–324. doi:10.1007/s10712-007-9027-6.
Çinar, H., & Alkan, H. (2015). Crustal Structure of Eastern Anatolia from Single-Station Rayleigh Wave Group Velocities. Eastern Anatolian Journal of Science, I, 57–69.
Kumar, A., Kumar, N., & Mukhopadhyay, S. (2018). Investigation of azimuthal variation in seismic surface waves group velocity in the western part of Himalaya-Tibet Indo-Gangetic plains region. Himalayan Geology, 39(1), 33–46.
Ouattara, Y., Zigone, D., & Maggi, A. (2019). Rayleigh wave group velocity dispersion tomography of West Africa using regional earthquakes and ambient seismic noise. Journal of Seismology, 23(6), 1201–1221. doi:10.1007/s10950-019-09860-z.
Coşkun, N. (2009). Nondestructive Electrical Resistivity Method to Map the Drainage System of Football Playgrounds. Journal of Performance of Constructed Facilities, 23(5), 303–308. doi:10.1061/(asce)cf.1943-5509.0000037.
Milsom, J., (2003). Field Geophysics, The Geological Field Guide Series, Third Edition, Willey, England.
Octova, A., & Yulhendra, D. (2017). Iron ore deposits model using geoelectrical resistivity method with dipole-dipole array. MATEC Web of Conferences, 101, 4017. doi:10.1051/matecconf/201710104017.
Palacky, G. Resistivity characteristics of geologic targets. Electromagnetic Methods in Applied Geophysics, 1, 53–129.
Cardarelli, E., & De Donno, G. (2017). Multidimensional electrical resistivity survey for bedrock detection at the Rieti Plain (Central Italy). Journal of Applied Geophysics, 141, 77–87. doi:10.1016/j.jappgeo.2017.04.012.
Stummer, P., Maurer, H., Horstmeyer, H., & Green, A. G. (2002). Optimization of DC resistivity data acquisition: Real-time experimental design and a new multielectrode system. IEEE Transactions on Geoscience and Remote Sensing, 40(12), 2727–2735. doi:10.1109/TGRS.2002.807015.
Colella, A., Lapenna, V., & Rizzo, E. (2004). High-resolution imaging of the High Agri Valley Basin (Southern Italy) with electrical resistivity tomography. Tectonophysics, 386(1–2), 29–40. doi:10.1016/j.tecto.2004.03.017.
Loke, M.H., (1997). Electrical imaging surveys for environmental and engineering studies, a practical guide to 2-D and 3-D surveys: RES2DINVand RES2MOD Manual, Penang, Malaysia.
Orlando, L. (2013). Some considerations on electrical resistivity imaging for characterization of waterbed sediments. Journal of Applied Geophysics, 95, 77–89. doi:10.1016/j.jappgeo.2013.05.005.
Poblet, J., & Lisle, R. J. (2011). Kinematic evolution and structural styles of fold-and-thrust belts. Geological Society Special Publication, 349, 1–24. doi:10.1144/SP349.1.
Roche, V., Childs, C., Madritsch, H., & Camanni, G. (2020). Layering and structural inheritance controls on fault zone structure in three dimensions: A case study from the northern Molasse basin, Switzerland. Journal of the Geological Society, 177(3), 493–508. doi:10.1144/jgs2019-052.
Kumar, D., Mondal, S., Nandan, M. J., Harini, P., Sekhar, B. M. V. S., & Sen, M. K. (2016). Two-dimensional electrical resistivity tomography (ERT) and time-domain-induced polarization (TDIP) study in hard rock for groundwater investigation: a case study at Choutuppal Telangana, India. Arabian Journal of Geosciences, 9(5), 355. doi:10.1007/s12517-016-2382-1.
Keçeli, A. (2012). Soil Parameters Which Can Be Determined With Seismic Velocities. Jeofizik, 16(16), 17–29. doi:11.a02/jeofizik-1011-31.
Levshin, A. L., & Panza, G. F. (2006). Caveats in multi-modal inversion of seismic surface wavefields. Pure and Applied Geophysics, 163(7), 1215–1233. doi:10.1007/s00024-006-0069-3.
Gao, L., Xia, J., Pan, Y., & Xu, Y. (2016). Reason and Condition for Mode Kissing in MASW Method. Pure and Applied Geophysics, 173(5), 1627–1638. doi:10.1007/s00024-015-1208-5.
Ojo, A. O., Ni, S., & Li, Z. (2017). Crustal radial anisotropy beneath Cameroon from ambient noise tomography. Tectonophysics, 696–697, 37–51. doi:10.1016/j.tecto.2016.12.018.
Nishida, K., Kawakatsu, H., & Obara, K. (2008). Three-dimensional crustal S wave velocity structure in Japan using microseismic data recorded by Hi-net tiltmeters. Journal of Geophysical Research: Solid Earth, 113(10). doi:10.1029/2007JB005395.
Jin, G., & Gaherty, J. B. (2015). Surface wave phase-velocity tomography based on multichannel cross-correlation. Geophysical Journal International, 201(3), 1383–1398. doi:10.1093/gji/ggv079.
Çakır, Ö. (2018). Seismic crust structure beneath the Aegean region in southwest Turkey from radial anisotropic inversion of Rayleigh and Love surface waves. Acta Geophysica, 66(6), 1303–1340. doi:10.1007/s11600-018-0223-1.
Wang, Y., & Pavlis, G. L. (2016). Generalized iterative deconvolution for receiver function estimation. Geophysical Journal International, 204(2), 1086–1099. doi:10.1093/gji/ggv503.
Young, M. K., Rawlinson, N., Arroucau, P., Reading, A. M., & Tkalčič, H. (2011). High-frequency ambient noise tomography of southeast Australia: New constraints on Tasmania’s tectonic past. Geophysical Research Letters, 38(13), 13313. doi:10.1029/2011GL047971.
Loke, M.H., (2014). RES2DMOD ver. 3.01: Rapid 2D resistivity forward modeling using the finite-difference and finite-element methods, Geotomo Software, Penang, Malaysia.
Loke, D. M. (2002). Electrical imaging surveys for environmental and engineering studies - A practical guide to 2-D and 3-D surveys Copyright. In Cangkat Minden Lorong, Penang, Malaysia.
Loke, M.H., (2004). Tutorial: 2-D and 3-D electrical imaging surveys, Geotomo Software, Penang, Malaysia.
Loke, M. H., & Barker, R. D. (1996). Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophysical Prospecting, 44(1), 131–152. doi:10.1111/j.1365-2478.1996.tb00142.x.
Dal Moro, G. (2020). The magnifying effect of a thin shallow stiff layer on Love waves as revealed by multi-component analysis of surface waves. Scientific Reports, 10(1), 9071. doi:10.1038/s41598-020-66070-1.
Iwamori, H., Ueki, K., Hoshide, T., Sakuma, H., Ichiki, M., Watanabe, T., … Takahashi, E. (2021). Simultaneous Analysis of Seismic Velocity and Electrical Conductivity in the Crust and the Uppermost Mantle: A Forward Model and Inversion Test Based on Grid Search. Journal of Geophysical Research: Solid Earth, 126(9). doi:10.1029/2021jb022307.
DOI: 10.28991/HEF-2021-02-03-01
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Özcan Çakır, Nart Coşkun