Functionalized Biochars for Enhanced Removal of Heavy Metals from Aqueous Solutions: Mechanism and Future Industrial Prospects

Felix S. Nworie, Nkoli Mgbemena, A. C. Ike-Amadi, Jane Ebunoha

Abstract


Development of efficient modified bioinspired material for the sorption of heavy metals is currently on the fore front of environmental heavy metals remediation research. Functionalized biochar for heavy metals removal is highly advantageous because of striking properties such as regenerability, simplicity, low–cost, high efficiency, and mechanical stability, chemical inertness to many organic solvent, surface polarity, functionality, chelation property and decreased hydrophobicity absent in naked biochar. This review surveyed the sources of heavy metals, the bioavailability and effects on man and biota, and previous work on the method of preparation of the biochar, its modification, and its characterization. The paper also presented critical analysis on the preparation of biochar, modification methods, surface chemistry, mechanisms of interaction, extraneous variables, and characterization methods. A comparative treatment of the preparation conditions, characterization methods, and surface functionalities was presented. The perceived disadvantages were listed, and the future prospects of the new research area for industrial scale applications were thoroughly presented.

 

Doi: 10.28991/HEF-2022-03-03-09

Full Text: PDF


Keywords


Biochar; Heavy Metals; Functionalization; Adsorption Studies; Mechanism; Characterization.

References


Sharma, H., Rawal, N., & Mathew, B. B. (2015). The characteristics, toxicity and effects of cadmium. International journal of nanotechnology and nanoscience, 3(10), 1-9.

Inyang, M. I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., Pullammanappallil, P., Ok, Y. S., & Cao, X. (2015). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 46(4), 406–433. doi:10.1080/10643389.2015.1096880.

Orłowski, C., & Piotrowski, J. K. (2003). Biological levels of cadmium and zinc in the small intestine of non-occupationally exposed human subjects. Human and Experimental Toxicology, 22(2), 57–63. doi:10.1191/0960327103ht326oa.

Li, B., Yang, L., Wang, C. quan, Zhang, Q. pei, Liu, Q. cheng, Li, Y. ding, & Xiao, R. (2017). Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere, 175, 332–340. doi:10.1016/j.chemosphere.2017.02.061.

Bernhoft, R. A. (2013). Cadmium toxicity and treatment. The Scientific World Journal, 2013. doi:10.1155/2013/394652.

Godt, J., Scheidig, F., Grosse-Siestrup, C., Esche, V., Brandenburg, P., Reich, A., & Groneberg, D. A. (2006). The toxicity of cadmium and resulting hazards for human health. Journal of Occupational Medicine and Toxicology, 1(1), 22. doi:10.1186/1745-6673-1-22.

Chen, D., Wang, X., Wang, X., Feng, K., Su, J., & Dong, J. (2020). The mechanism of cadmium sorption by sulphur-modified wheat straw biochar and its application cadmium-contaminated soil. Science of the Total Environment, 714(136550). doi:10.1016/j.scitotenv.2020.136550.

Bernard, A. (2004). Renal dysfunction induced by cadmium: Biomarkers of critical effects. BioMetals, 17(5), 519–523. doi:10.1023/B:BIOM.0000045731.75602.b9.

Yu, W., Lian, F., Cui, G., & Liu, Z. (2018). N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution. Chemosphere, 193, 8–16. doi:10.1016/j.chemosphere.2017.10.134.

Chen, R., Zhao, X., Jiao, J., Li, Y., & Wei, M. (2019). Surface-modified biochar with polydentate binding sites for the removal of cadmium. International Journal of Molecular Sciences, 20(7), 1775. doi:10.3390/ijms20071775.

Zhao, J., Niu, Y., Ren, B., Chen, H., Zhang, S., Jin, J., & Zhang, Y. (2018). Synthesis of Schiff base functionalized superparamagnetic Fe3O4 composites for effective removal of Pb(II) and Cd(II) from aqueous solution. Chemical Engineering Journal, 347, 574–584. doi:10.1016/j.cej.2018.04.151.

Xing, R. Z., Li, J. X., Yang, X. G., Chen, Z. W., Huang, R., Chen, Z. X., Zhou, S. G., & Chen, Z. (2020). Preparation of High-Performance CdS@C Catalyst Using Cd-Enriched Biochar Recycled From Plating Wastewater. Frontiers in Chemistry, 8, 140. doi:10.3389/fchem.2020.00140.

Tang, W., Cai, N., Xie, H., Liu, Y., Wang, Z., Liao, Y., Wei, T., Zhang, C., Fu, Z., & Yin, D. (2020). Efficient adsorption removal of Cd2+ from aqueous solutions by HNO3 modified bamboo-derived biochar. IOP Conference Series: Materials Science and Engineering, 729(1), 12081. doi:10.1088/1757-899X/729/1/012081.

Zhang, S., Yang, X., Liu, L., Ju, M., & Zheng, K. (2018). Adsorption behavior of selective recognition functionalized biochar to Cd(II) in wastewater. Materials, 11(2), 299. doi:10.3390/ma11020299.

Nworie, F., Oroke, E., Ikelle, I., & Nworu, J. (2020). Equilibrium and Kinetic Studies for the Adsorptive Removal of Lead (II) Ions from Aqueous Solution Using Activated Plantain Peel Biochar. Acta Chemica Malaysia, 4(1), 9–16. doi:10.2478/acmy-2020-0002.

Nworie, F. S., Nwabue, F. I., Oti, W., Mbam, E., & Nwali, B. U. (2019). Removal of methylene blue from aqueous solution using activated rice husk biochar: Adsorption isotherms, kinetics and error analysis. Journal of the Chilean Chemical Society, 64(1), 4365–4376. doi:10.4067/s0717-97072019000104365.

Yu, J.-X., Wang, L.-Y., Chi, R.-A., Zhang, Y.-F., Xu, Z.-G., & Guo, J. (2013). Competitive adsorption of Pb2+ and Cd2+ on magnetic modified sugarcane bagasse prepared by two simple steps. Applied Surface Science, 268, 163–170. doi:10.1016/j.apsusc.2012.12.047.

Chen, B., Yuan, M., & Qian, L. (2012). Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers. Journal of Soils and Sediments, 12(9), 1350–1359. doi:10.1007/s11368-012-0554-5.

Nworie, F. S., Nwabue, F., Ik, I. I. I., Ogah, A. O., Elom, N., Illochi, N. O., Itumoh, E. J., & Oroke, C. E. (2018). Activated plantain peel biochar as adsorbent for sorption of Zinc(II) ions: Equilibrium and kinetics studies. Journal of the Turkish Chemical Society, Section A: Chemistry, 5(3), 1257–1270. doi:10.18596/jotcsa.438332.

Zhu, S., Ho, S. H., Huang, X., Wang, D., Yang, F., Wang, L., Wang, C., Cao, X., & Ma, F. (2017). Magnetic Nanoscale Zerovalent Iron Assisted Biochar: Interfacial Chemical Behaviors and Heavy Metals Remediation Performance. ACS Sustainable Chemistry and Engineering, 5(11), 9673–9682. doi:10.1021/acssuschemeng.7b00542.

Han, Z., Sani, B., Mrozik, W., Obst, M., Beckingham, B., Karapanagioti, H. K., & Werner, D. (2015). Magnetite impregnation effects on the sorbent properties of activated carbons and biochars. Water Research, 70, 394–403. doi:10.1016/j.watres.2014.12.016.

Li, S., & Chen, G. (2018). Using hydrogel-biochar composites for enhanced cadmium removal from aqueous media. Material Science & Engineering International Journal, 2(6), 294–298. doi:10.15406/mseij.2018.02.00073.

Zhou, Y., Gao, B., Zimmerman, A. R., Fang, J., Sun, Y., & Cao, X. (2013). Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chemical Engineering Journal, 231, 512–518. doi:10.1016/j.cej.2013.07.036.

Godwin, P. M., Pan, Y., Xiao, H., & Afzal, M. T. (2019). Progress in Preparation and Application of Modified Biochar for Improving Heavy Metal Ion Removal from Wastewater. Journal of Bioresources and Bioproducts, 4(1), 31–42. doi:10.21967/jbb.v4i1.180.

Nhuchhen, D. R. (2016). Prediction of carbon, hydrogen, and oxygen compositions of raw and torrefied biomass using proximate analysis. Fuel, 180, 348–356. doi:10.1016/j.fuel.2016.04.058.

Salema, A. A., Afzal, M. T., & Bennamoun, L. (2017). Pyrolysis of corn stalk biomass briquettes in a scaled-up microwave technology. Bioresource Technology, 233, 353–362. doi:10.1016/j.biortech.2017.02.113.

Liang, J., Li, X., Yu, Z., Zeng, G., Luo, Y., Jiang, L., Yang, Z., Qian, Y., & Wu, H. (2017). Amorphous MnO2 Modified Biochar Derived from Aerobically Composted Swine Manure for Adsorption of Pb(II) and Cd(II). ACS Sustainable Chemistry and Engineering, 5(6), 5049–5058. doi:10.1021/acssuschemeng.7b00434.

Uchimiya, M., Chang, S., & Klasson, K. T. (2011). Screening biochars for heavy metal retention in soil: Role of oxygen functional groups. Journal of Hazardous Materials, 190(1–3), 432–441. doi:10.1016/j.jhazmat.2011.03.063.

Manyà, J. J. (2012). Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environmental Science and Technology, 46(15), 7939–7954. doi:10.1021/es301029g.

Peng, H., Gao, P., Chu, G., Pan, B., Peng, J., & Xing, B. (2017). Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars. Environmental Pollution, 229, 846–853. doi:10.1016/j.envpol.2017.07.004.

Lu, Z., Zhang, H., Shahab, A., Zhang, K., Zeng, H., Nabi, I., & Ullah, H. (2021). Comparative study on characterization and adsorption properties of phosphoric acid activated biochar and nitrogen-containing modified biochar employing Eucalyptus as a precursor. Journal of Cleaner Production, 303, 127046. doi:10.1016/j.jclepro.2021.127046.

Wang, B., Ran, M., Fang, G., Wu, T., & Ni, Y. (2020). Biochars from lignin-rich residue of furfural manufacturing process for heavy metal ions remediation. Materials, 13(5), 1037. doi:10.3390/ma13051037.

Akgül, G., Maden, T. B., Diaz, E., & Jiménez, E. M. (2019). Modification of tea biochar with Mg, Fe, Mn and Al salts for efficient sorption of PO3-4 and Cd2+ from aqueous solutions. Journal of Water Reuse and Desalination, 9(1), 57–66. doi:10.2166/wrd.2018.018.

Liu, P., Liu, W. J., Jiang, H., Chen, J. J., Li, W. W., & Yu, H. Q. (2012). Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technology, 121, 235–240. doi:10.1016/j.biortech.2012.06.085.

Liu, X., Zhang, A., Ji, C., Joseph, S., Bian, R., Li, L., Pan, G., & Paz-Ferreiro, J. (2013). Biochar’s effect on crop productivity and the dependence on experimental conditions-a meta-analysis of literature data. Plant and Soil, 373(1–2), 583–594. doi:10.1007/s11104-013-1806-x.

Nworie, F. S., Nwabue, F. I., Oti, W., Obasi, C., Ejim, C., & Nwafor, B. (2020). Synthesis of biochar conjugated schiff base composites and their enhanced antimicrobial activity against five pathogenic organisms. Nova Biotechnologica et Chimica, 19(2), 165–174. doi:10.36547/nbc.v19i2.636.

Mukherjee, A., Zimmerman, A. R., & Harris, W. (2011). Surface chemistry variations among a series of laboratory-produced biochars. Geoderma, 163(3–4), 247–255. doi:10.1016/j.geoderma.2011.04.021.

Liu, W. J., Zeng, F. X., Jiang, H., & Yu, H. Q. (2011). Total recovery of nitrogen and phosphorus from three wetland plants by fast pyrolysis technology. Bioresource Technology, 102(3), 3471–3479. doi:10.1016/j.biortech.2010.10.135.

Liu, Z., Zhang, F. S., & Sasai, R. (2010). Arsenate removal from water using Fe3O4-loaded activated carbon prepared from waste biomass. Chemical Engineering Journal, 160(1), 57–62. doi:10.1016/j.cej.2010.03.003.

Ghodake, G. S., Shinde, S. K., Kadam, A. A., Saratale, R. G., Saratale, G. D., Kumar, M., ... & Kim, D. Y. (2021). Review on biomass feedstocks, pyrolysis mechanism and physicochemical properties of biochar: State-of-the-art framework to speed up vision of circular bioeconomy. Journal of Cleaner Production, 297, 126645. doi:10.1016/j.jclepro.2021.126645.

Motasemi, F., & Afzal, M. T. (2013). A review on the microwave-assisted pyrolysis technique. Renewable and Sustainable Energy Reviews, 28(C), 317–330. doi:10.1016/j.rser.2013.08.008.

Singh, S., Chakraborty, J. P., & Mondal, M. K. (2020). Pyrolysis of torrefied biomass: Optimization of process parameters using response surface methodology, characterization, and comparison of properties of pyrolysis oil from raw biomass. Journal of Cleaner Production, 272, 122517. doi:10.1016/j.jclepro.2020.122517.

Singh, S., Barick, K. C., & Bahadur, D. (2011). Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens. Journal of Hazardous Materials, 192(3), 1539–1547. doi:10.1016/j.jhazmat.2011.06.074.

Sun, C., Chen, T., Huang, Q., Wang, J., Lu, S., & Yan, J. (2019). Enhanced adsorption for Pb(II) and Cd(II) of magnetic rice husk biochar by KMnO4 modification. Environmental Science and Pollution Research, 26(9), 8902–8913. doi:10.1007/s11356-019-04321-z.

Sun, H., He, X., Wang, Y., Cannon, F. S., Wen, H., & Li, X. (2018). Nitric acid-anionic surfactant modified activated carbon to enhance cadmium(II) removal from wastewater: Preparation conditions and physicochemical properties. Water Science and Technology, 78(7), 1489–1498. doi:10.2166/wst.2018.424.

Badruddoza, A. Z. M., Shawon, Z. B. Z., Tay, W. J. D., Hidajat, K., & Uddin, M. S. (2013). Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydrate Polymers, 91(1), 322–332. doi:10.1016/j.carbpol.2012.08.030.

Ge, F., Li, M. M., Ye, H., & Zhao, B. X. (2012). Effective removal of heavy metal ions Cd 2+, Zn 2+, Pb 2+, Cu 2+ from aqueous solution by polymer-modified magnetic nanoparticles. Journal of Hazardous Materials, 211–212, 366–372. doi:10.1016/j.jhazmat.2011.12.013.

Afkhami, A., Saber-Tehrani, M., & Bagheri, H. (2010). Modified maghemite nanoparticles as an efficient adsorbent for removing some cationic dyes from aqueous solution. Desalination, 263(1–3), 240–248. doi:10.1016/j.desal.2010.06.065.

Vithanage, M., Rajapaksha, A. U., Ahmad, M., Uchimiya, M., Dou, X., Alessi, D. S., & Ok, Y. S. (2015). Mechanisms of antimony adsorption onto soybean stover-derived biochar in aqueous solutions. Journal of Environmental Management, 151, 443–449. doi:10.1016/j.jenvman.2014.11.005.

Xu, Y., & Chen, B. (2013). Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresource Technology, 146, 485–493. doi:10.1016/j.biortech.2013.07.086.

Vuppaladadiyam, A. K., Vuppaladadiyam, S. S. V., Sahoo, A., ... & Leu, S. Y. (2022). Bio-oil and biochar from the pyrolytic conversion of biomass: A current and future perspective on the trade-off between economic, environmental, and technical indicators. Science of the Total Environment, 159155. doi:10.1016/j.scitotenv.2022.159155.

Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., & Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: A review. Journal of Hazardous Materials, 211–212, 317–331. doi:10.1016/j.jhazmat.2011.10.016.

Wu, P., Wang, Z., Wang, H., Bolan, N. S., Wang, Y., & Chen, W. (2020). Visualizing the emerging trends of biochar research and applications in 2019: a scientometric analysis and review. Biochar, 2(2), 135–150. doi:10.1007/s42773-020-00055-1.

Wu, Z., Chen, X., Yuan, B., & Fu, M. L. (2020). A facile foaming-polymerization strategy to prepare 3D MnO2 modified biochar-based porous hydrogels for efficient removal of Cd(II) and Pb(II). Chemosphere, 239, 124745. doi:10.1016/j.chemosphere.2019.124745.

Xu, L., Zheng, X., Cui, H., Zhu, Z., Liang, J., & Zhou, J. (2017). Equilibrium, Kinetic, and Thermodynamic Studies on the Adsorption of Cadmium from Aqueous Solution by Modified Biomass Ash. Bioinorganic Chemistry and Applications, 2017, 1–9. doi:10.1155/2017/3695604.

Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A. R., & Ro, K. S. (2012). Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chemical Engineering Journal, 200–202(201/202), 673–680. doi:10.1016/j.cej.2012.06.116.

Chen, Z., Xiao, X., Chen, B., & Zhu, L. (2015). Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures. Environmental Science and Technology, 49(1), 309–317. doi:10.1021/es5043468.

Shafeeyan, M. S., Daud, W. M. A. W., Houshmand, A., & Shamiri, A. (2010). A review on surface modification of activated carbon for carbon dioxide adsorption. Journal of Analytical and Applied Pyrolysis, 89(2), 143–151. doi:10.1016/j.jaap.2010.07.006.

Ma, L., Zhu, J., Xi, Y., Zhu, R., He, H., Liang, X., & Ayoko, G. A. (2015). Simultaneous adsorption of Cd(II) and phosphate on Al13 pillared montmorillonite. RSC Advances, 5(94), 77227–77234. doi:10.1039/c5ra15744g.

Yap, M. W., Mubarak, N. M., Sahu, J. N., & Abdullah, E. C. (2017). Microwave induced synthesis of magnetic biochar from agricultural biomass for removal of lead and cadmium from wastewater. Journal of Industrial and Engineering Chemistry, 45, 287–295. doi:10.1016/j.jiec.2016.09.036.

Rajapaksha, A. U., Chen, S. S., Tsang, D. C. W., Zhang, M., Vithanage, M., Mandal, S., Gao, B., Bolan, N. S., & Ok, Y. S. (2016). Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere, 148, 276–291. doi:10.1016/j.chemosphere.2016.01.043.

Yang, G.-X., & Jiang, H. (2014). Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Research, 48, 396–405. doi:10.1016/j.watres.2013.09.050.

Fosso-Kankeu, E., Weideman, R., Moyakhe, D., Waanders, F. B., Le Roux, M., & Campbell, Q. P. (2019). Hydrothermal preparation of biochar from spent coffee grounds, and its application for the removal of cadmium from coal tailings leachate. Journal of the Southern African Institute of Mining and Metallurgy, 119(7), 607–612. doi:10.17159/2411-9717/449/2019.

Yin, G., Bi, L., Song, X., Luo, H., Ji, P., Lin, Q., Liu, Q., & Tang, G. (2019). Adsorption of Cd(II) from aqueous solution by Pennisetum sp. straw biochars derived from different modification methods. Environmental Science and Pollution Research, 26(7), 7024–7032. doi:10.1007/s11356-019-04158-6.

Nadeem, M., Shabbir, M., Abdullah, M. A., Shah, S. S., & McKay, G. (2009). Sorption of cadmium from aqueous solution by surfactant-modified carbon adsorbents. Chemical Engineering Journal, 148(2–3), 365–370. doi:10.1016/j.cej.2008.09.010.

Ahn, C. K., Kim, Y. M., Woo, S. H., & Park, J. M. (2009). Removal of cadmium using acid-treated activated carbon in the presence of nonionic and/or anionic surfactants. Hydrometallurgy, 99(3–4), 209–213. doi:10.1016/j.hydromet.2009.08.008.

Wang, Z. M., Wagner, J., Ghosal, S., Bedi, G., & Wall, S. (2017). SEM/EDS and optical microscopy analyses of microplastics in ocean trawl and fish guts. Science of the Total Environment, 603, 616-626. doi:10.1016/j.scitotenv.2017.06.047.

Zhang, H., Xu, F., Xue, J., Chen, S., Wang, J., & Yang, Y. (2020). Enhanced removal of heavy metal ions from aqueous solution using manganese dioxide-loaded biochar: Behavior and mechanism. Scientific Reports, 10(1), 6067. doi:10.1038/s41598-020-63000-z.

Chen, B., Chen, Z., & Lv, S. (2011). A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresource Technology, 102(2), 716–723. doi:10.1016/j.biortech.2010.08.067.

Zhou, Y., Gao, B., Zimmerman, A. R., Fang, J., Sun, Y., & Cao, X. (2013). Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chemical Engineering Journal, 231, 512–518. doi:10.1016/j.cej.2013.07.036.

Yi, Y., Huang, Z., Lu, B., Xian, J., Tsang, E. P., Cheng, W., Fang, J., & Fang, Z. (2020). Magnetic biochar for environmental remediation: A review. Bioresource Technology, 298. doi:10.1016/j.biortech.2019.122468.

Zhu, X., Liu, Y., Luo, G., Qian, F., Zhang, S., & Chen, J. (2014). Facile Fabrication of Magnetic Carbon Composites from Hydrochar via Simultaneous Activation and Magnetization for Triclosan Adsorption. Environmental Science & Technology, 48(10), 5840–5848. doi:10.1021/es500531c.

Thines, K. R., Abdullah, E. C., Mubarak, N. M., & Ruthiraan, M. (2017). Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: A review. Renewable and Sustainable Energy Reviews, 67, 257–276. doi:10.1016/j.rser.2016.09.057.

Furtado, L. M., Fuentes, D. P., Ando, R. A., Oliveira, P. V., & Petri, D. F. S. (2022). Carboxymethyl cellulose/sugarcane bagasse/polydopamine adsorbents for efficient removal of Pb2+ ions from synthetic and undergraduate laboratory wastes. Journal of Cleaner Production, 380, 134969. doi:10.1016/j.jclepro.2022.134969.

Devi, P., & Saroha, A. K. (2014). Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent. Bioresource Technology, 169, 525–531. doi:10.1016/j.biortech.2014.07.062.

Kołodyńska, D., Bąk, J., Kozioł, M., & Pylypchuk, L. V. (2017). Investigations of Heavy Metal Ion Sorption Using Nanocomposites of Iron-Modified Biochar. Nanoscale Research Letters, 12(433). doi:10.1186/s11671-017-2201-y.

Ruthiraan, M., Mubarak, N. M., Thines, R. K., Abdullah, E. C., Sahu, J. N., Jayakumar, N. S., & Ganesan, P. (2015). Comparative kinetic study of functionalized carbon nanotubes and magnetic biochar for removal of Cd2+ ions from wastewater. Korean Journal of Chemical Engineering, 32(3), 446–457. doi:10.1007/s11814-014-0260-7.

Gao, R., Hu, H., Fu, Q., Li, Z., Xing, Z., Ali, U., ... & Liu, Y. (2020). Remediation of Pb, Cd, and Cu contaminated soil by co-pyrolysis biochar derived from rape straw and orthophosphate: Speciation transformation, risk evaluation and mechanism inquiry. Science of the Total Environment, 730, 139119. doi:10.1016/j.scitotenv.2020.139119.

El-araby, H. A., Ibrahim, A. M. M. A., & Mangood, A. H. (2019). Removal of copper (II) and cadmium (II) ions from aqueous solution by adsorption on modified almond shells. International Journal of Engineering and Technology, 19(05), 1–39.

Yang, Y., Luo, X., Zhang, J., Ma, X., Sun, P., & Zhao, L. (2022). Sewage sludge–coconut fiber co-pyrolysis biochar: Mechanisms underlying synergistic heavy metal stabilization and ciprofloxacin adsorption. Journal of Cleaner Production, 375, 134149. doi:10.1016/j.jclepro.2022.134149.

Canatoy, R. C., Cho, S. R., Ok, Y. S., Jeong, S. T., & Kim, P. J. (2022). Critical evaluation of biochar utilization effect on mitigating global warming in whole rice cropping boundary. Science of the Total Environment, 827, 154344. doi:10.1016/j.scitotenv.2022.154344.

El-Naggar, N. E. A., Hamouda, R. A., Mousa, I. E., Abdel-Hamid, M. S., & Rabei, N. H. (2018). Statistical optimization for cadmium removal using ULVA Fasciata biomass: Characterization, immobilization and application for almost-complete cadmium removal from aqueous solutions. Scientific Reports, 8(1), 12456. doi:10.1038/s41598-018-30855-2.

Kim, H. R., Lee, J. H., Lee, S. K., Chun, Y., Park, C., Jin, J. H., ... & Kim, S. W. (2021). Fabricating a modified biochar-based all-solid-state flexible microsupercapacitor using pen lithography. Journal of Cleaner Production, 284, 125449. doi:10.1016/j.jclepro.2020.125449.

Lu, L., & Chen, B. (2018). Enhanced bisphenol a removal from storm water in biochar-amended biofilters: Combined with batch sorption and fixed-bed column studies. Environmental Pollution, 243, 1539–1549. doi:10.1016/j.envpol.2018.09.097.

Tan, Y., Yin, X., Wang, C., Sun, H., Ma, A., Zhang, G., & Wang, N. (2019). Sorption of cadmium onto Mg-Fe Layered Double Hydroxide (LDH)-Kiwi branch biochar. Environmental Pollutants and Bioavailability, 31(1), 189–197. doi:10.1080/26395940.2019.1604165.

Zhang, L., Guo, J., Huang, X., Wang, W., Sun, P., Li, Y., & Han, J. (2019). Functionalized biochar-supported magnetic MnFe2O4 nanocomposite for the removal of Pb(ii) and Cd(ii). RSC Advances, 9(1), 365–376. doi:10.1039/c8ra09061k.

Kour, J., Homagai, P. L., Cagnin, M., Masi, A., Pokhrel, M. R., & Ghimire, K. N. (2013). Adsorption of Cd (II), Cu (II), and Zn (II) from Aqueous Solution onto Nitrogen-Functionalized Desmostachya Bipinnata. Journal of Chemistry, 2013, 1–7. doi:10.1155/2013/649142.

Fidel, R. B., Laird, D. A., & Thompson, M. L. (2013). Evaluation of Modified Boehm Titration Methods for Use with Biochars. Journal of Environmental Quality, 42(6), 1771–1778. doi:10.2134/jeq2013.07.0285.

Fan, Z., Zhang, Q., Li, M., Niu, D., Sang, W., & Verpoort, F. (2018). Investigating the sorption behavior of cadmium from aqueous solution by potassium permanganate-modified biochar: quantify mechanism and evaluate the modification method. Environmental Science and Pollution Research, 25(9), 8330–8339. doi:10.1007/s11356-017-1145-1.

Yandri, Y., Tiarsa, E. R., Suhartati, T., Irawan, B., & Hadi, S. (2022). Immobilization and Stabilization of Aspergillus Fumigatus α-Amylase by Adsorption on a Chitin. Emerging Science Journal, 7(1), 77-89. doi:10.28991/ESJ-2023-07-01-06.

Lu, L., Yu, W., Wang, Y., Zhang, K., Zhu, X., Zhang, Y., Wu, Y., Ullah, H., Xiao, X., & Chen, B. (2020). Application of biochar-based materials in environmental remediation: from multi-level structures to specific devices. Biochar, 2(1), 1–31. doi:10.1007/s42773-020-00041-7.

Wang, S., Wang, N., Yao, K., Fan, Y., Li, W., Han, W., Yin, X., & Chen, D. (2019). Characterization and Interpretation of Cd (II) Adsorption by Different Modified Rice Straws under Contrasting Conditions. Scientific Reports, 9(1), 17868. doi:10.1038/s41598-019-54337-1.

Yuan, J. H., Xu, R. K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102(3), 3488–3497. doi:10.1016/j.biortech.2010.11.018.

Wang, H., Gao, B., Wang, S., Fang, J., Xue, Y., & Yang, K. (2015). Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresource Technology, 197, 356–362. doi:10.1016/j.biortech.2015.08.132.

Nworie, F. S., Nwabue, F. I., Oti, W., Omaka, N. O., & Igwea, H. (2021). Hydrothermal Synthesis of Multifunctional Biochar-supported SALEN Nanocomposite for Adsorption of Cd(II) Ions: Function, Mechanism, Equilibrium and Kinetic Studies. Analytical and Bioanalytical Chemistry Research, 8(1), 91–112. doi:10.22036/abcr.2020.234163.1512.


Full Text: PDF

DOI: 10.28991/HEF-2022-03-03-09

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 FELIX SUNDAY NWORIE