Molecular Dynamics Simulation to Investigate the Effect of Al2O3 Doping and Compression on the Structural Properties of Aluminium Silicate Glass

Pham Huu Kien, Thonchit Monesaykham, Giap Thi Thuy Trang


In this paper, we have performed molecular dynamics simulation to investigate the effect of Al2O3 doping and compression on the structural properties of aluminium silicate (AS2) glass. The structural properties are examined via TOx units, OTy linkages, the average bond angle distributions, order parameters, and cluster function. The result shows that the network structure of AS2 is mainly built by TOx units and OTy linkages (T = Si or Al, x = 3-7, y = 2-4). We found that in AS2 glass, the subnet structure performed by the perfect SiOx units is not transfigured. Meanwhile, the AlOx units are significantly distorted. The structural organization of the SiO4-network in AS2 glass is not dependent on Al2O3doping. Moreover, the degree of structural homogenous significantly depends on compression. In the range of 15–25 GPa, the structural homogenous of AS2 is caused by the mobility of all atoms, tightly related to the glass-glass transition. Our work is expected to support finding the AS2 compositions that can produce hard and damage-tolerant glasses in the higher pressure region.


Doi: 10.28991/HEF-2022-03-02-03

Full Text: PDF


Al2O3 Doping; Heterogeneous; Glass-Glass Transition; The Fastest Atoms; The Slowest Atoms.


Watson, E. B. (1981). Diffusion in magmas at depth in the Earth: The effects of pressure and dissolved H2O. Earth and Planetary Science Letters, 52(2), 291–301. doi:10.1016/0012-821X(81)90184-9.

Totea, A. M., Dorin, I., Laity, P. R., Sabin, J., Conway, B. R., Waters, L., & Asare-Addo, K. (2020). A molecular understanding of magnesium aluminium silicate – drug, drug – polymer, magnesium aluminium silicate – polymer nanocomposite complex interactions in modulating drug release: Towards zero order release. European Journal of Pharmaceutics and Biopharmaceutics, 154, 270–282. doi:10.1016/j.ejpb.2020.07.027.

Vinh, L. T., Hung, P. K., Ba Van, T., & Hong, N. V. (2020). Computer simulation of local microstructure and dynamics in aluminum-silicate melt. Modelling and Simulation in Materials Science and Engineering, 28(3). doi:10.1088/1361-651X/ab6ec6.

Zhou, Q., Shi, Y., Deng, B., Neuefeind, J., & Bauchy, M. (2021). Experimental method to quantify the ring size distribution in silicate glasses and simulation validation thereof. Science Advances, 7(28), 1761. doi:10.1126/sciadv.abh1761.

Shih, Y. T., Sundararaman, S., & Huang, L. (2020). Structural origin of the anomalous density maximum in silica and alkali silicate glasses. Journal of the American Ceramic Society, 103(7), 3942–3953. doi:10.1111/jace.16850.

Ohira, I., Kono, Y., Shibazaki, Y., Kenney-Benson, C., Masuno, A., & Shen, G. (2019). Ultrahigh pressure structural changes in a 60 mol. % Al2O3-40 mol. % SiO2 glass. Geochemical Perspectives Letters, 10, 41–45. doi:10.7185/geochemlet.1913.

Le Losq, C., Neuville, D. R., Florian, P., Henderson, G. S., & Massiot, D. (2014). The role of Al3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts. Geochimica et Cosmochimica Acta, 126, 495–517. doi:10.1016/j.gca.2013.11.010.

Rosales-Sosa, G. A., Masuno, A., Higo, Y., & Inoue, H. Crack-resistant Al2O3–SiO2 glasses. Scientific Reports, 6(1), 1–7.

Zheng, K., Zhang, Z., Yang, F., & Sridhar, S. (2012). Molecular dynamics study of the structural properties of calcium aluminosilicate slags with varying Al2O3/SiO2 ratios. ISIJ International, 52(3), 342–349. doi:10.2355/isijinternational.52.342.

Wilding, M. C., & Benmore, C. J. (2006). Structure of glasses and melts. Reviews in Mineralogy and Geochemistry, 63(1), 275–311. doi:10.2138/rmg.2006.63.12.

Greaves, G. N. (1988). EXAFS and the structure of catalysts. Catalysis Today, 2(5), 581–584. doi:10.1016/0920-5861(88)85021-1.

Stebbins, J. F., & Xu, Z. (1997). NMR evidence for excess non-bridging oxygen in an aluminosilicate glass. Nature, 390(6655), 60–62. doi:10.1038/36312.

Lee, S. K., & Stebbins, J. F. (2000). The Structure of Aluminosilicate Glasses: High-Resolution 17O and 27Al MAS and 3QMAS NMR Study. Journal of Physical Chemistry B, 104(17), 4091–4100. doi:10.1021/jp994273w.

Pask, J. A. (1996). Importance of Starting Materials on Reactions and Phase Equilibria in the Al2O3-SiO2 System. Journal of the European Ceramic Society, 16(2 SPEC. ISS.), 101–108. doi:10.1016/0955-2219(95)00147-6.

Urata, S., Nakamura, N., Tada, T., & Hosono, H. (2021). Molecular dynamics study on the co-doping effect of Al2O3 and fluorine to reduce Rayleigh scattering of silica glass. Journal of the American Ceramic Society, 104(10), 5001–5015. doi:10.1111/jace.17774.

Sen, S., & Youngman, R. E. (2004). High-resolution multinuclear NMR structural study of binary aluminosilicate and other related glasses. Journal of Physical Chemistry B, 108(23), 7557–7564. doi:10.1021/jp031348u.

Weber, R., Sen, S., Youngman, R. E., Hart, R. T., & Benmore, C. J. (2008). Structure of high alumina content A12O3-SiO 2 composition glasses. Journal of Physical Chemistry B, 112(51), 16726–16733. doi:10.1021/jp807964u.

Atila, A., Ghardi, E. M., Ouaskit, S., & Hasnaoui, A. (2019). Atomistic insights into the impact of charge balancing cations on the structure and properties of aluminosilicate glasses. Physical Review B, 100(14). doi:10.1103/PhysRevB.100.144109.

Karki, B. B., Ghosh, D. B., & Bajgain, S. K. (2018). Simulation of silicate melts under pressure. Magmas under Pressure: Advances in High-Pressure Experiments on Structure and Properties of Melts, 419–453. doi:10.1016/B978-0-12-811301-1.00016-2.

Charpentier, T., Okhotnikov, K., Novikov, A. N., Hennet, L., Fischer, H. E., Neuville, D. R., & Florian, P. (2018). Structure of Strontium Aluminosilicate Glasses from Molecular Dynamics Simulation, Neutron Diffraction, and Nuclear Magnetic Resonance Studies. Journal of Physical Chemistry B, 122(41), 9567–9583. doi:10.1021/acs.jpcb.8b05721.

Drewitt, J. W. E., Jahn, S., Sanloup, C., De Grouchy, C., Garbarino, G., & Hennet, L. (2015). Development of chemical and topological structure in aluminosilicate liquids and glasses at high pressure. Journal of Physics Condensed Matter, 27(10). doi:10.1088/0953-8984/27/10/105103.

Wang, Y., Sakamaki, T., Skinner, L. B., Jing, Z., Yu, T., Kono, Y., Park, C., Shen, G., Rivers, M. L., & Sutton, S. R. (2014). Atomistic insight into viscosity and density of silicate melts under pressure. Nature Communications, 5(1), 1–10. doi:10.1038/ncomms4241.

Luo, J., Vargheese, K. D., Tandia, A., Harris, J. T., & Mauro, J. C. (2016). Structural origin of intrinsic ductility in binary aluminosilicate glasses. Journal of Non-Crystalline Solids, 452, 297–306. doi:10.1016/j.jnoncrysol.2016.09.010.

Hong, N. V., Yen, N. V., Lan, M. T., & Hung, P. K. (2014). Coordination and polyamorphism of aluminium silicate under high pressure: Insight from analysis and visualization of molecular dynamics data. Canadian Journal of Physics, 92(12), 1573–1580. doi:10.1139/cjp-2014-0042.

Lodesani, F., Menziani, M. C., Hijiya, H., Takato, Y., Urata, S., & Pedone, A. (2020). Structural origins of the Mixed Alkali Effect in Alkali Aluminosilicate Glasses: Molecular Dynamics Study and its Assessment. Scientific Reports, 10(1), 1–18. doi:10.1038/s41598-020-59875-7.

Van, T. B., Hung, P. K., Vinh, L. T., Yen, N. V., Ha, N. T. T., & San, L. T. (2021). Domain structure, microscopic segregation and dynamics heterogeneity in alumina-silicate liquid. Journal of Non-Crystalline Solids, 552(120457). doi:10.1016/j.jnoncrysol.2020.120457.

Pfleiderer, P., Horbach, J., & Binder, K. (2006). Structure and transport properties of amorphous aluminium silicates: Computer simulation studies. Chemical Geology, 229(1–3), 186–197. doi:10.1016/j.chemgeo.2006.01.020.

Hoang, V. (2007). Dynamical heterogeneity and diffusion in high-density Al2O3•2SiO2 melts. Physica B: Condensed Matter, 400(1–2), 278–286. doi:10.1016/j.physb.2007.07.023.

Liu, Y., Bai, C., Lv, X., & Wei, R. (2015). Molecular Dynamics Simulation on the Influence of Al2O3 on the Slag Structure at 1873 K. Materials Today: Proceedings, 2, S453–S459. doi:10.1016/j.matpr.2015.05.061.

Benitez, T., Rivas Murillo, J. S., de Ligny, D., Travitzky, N., Novaes de Oliveira, A. P., & Hotza, D. (2020). Modeling the effect of the addition of alumina on structural characteristics and tensile deformation response of aluminosilicate glasses. Ceramics International, 46(13), 21657–21666. doi:10.1016/j.ceramint.2020.05.273.

Winkler, A., Horbach, J., Kob, W., & Binder, K. (2004). Structure and diffusion in amorphous aluminum silicate: A molecular dynamics computer simulation. Journal of Chemical Physics, 120(1), 384–393. doi:10.1063/1.1630562.

Kubicki, J. D., & Toplis, M. J. (2002). Molecular orbital calculations on aluminosilicate tricluster molecules: Implications for the structure of aluminosilicate glasses. American Mineralogist, 87(5–6), 668–678. doi:10.2138/am-2002-5-609.

Toplis, M. J., Dingwell, D. B., Hess, K. U., & Lenci, T. (1997). Viscosity, fragility, and configurational entropy of melts along the join SiO2-NaAlSiO4. American Mineralogist, 82(9–10), 979–990. doi:10.2138/am-1997-9-1014.

Toplis, M. J., Dingwell, D. B., & Lenci, T. (1997). Peraluminous viscosity maxima in Na2O-Al2O3-SiO2 liquids: The role of triclusters in tectosilicate melts. Geochimica et Cosmochimica Acta, 61(13), 2605–2612. doi:10.1016/S0016-7037(97)00126-9.

Xue, X., & Kanzaki, M. (1999). NMR Characteristics of Possible Oxygen Sites in Aluminosilicate Glasses and Melts: An ab Initio Study. Journal of Physical Chemistry B, 103(49), 10816–10830. doi:10.1021/jp992108a.

Okuno, M., Zotov, N., Schmücker, M., & Schneider, H. (2005). Structure of SiO2-Al2O3 glasses: Combined X-ray diffraction, IR and Raman studies. Journal of Non-Crystalline Solids, 351(12–13), 1032–1038. doi:10.1016/j.jnoncrysol.2005.01.014.

Yang, F., Zhou, W., Zhu, R., Dai, G., Wang, W., Wang, W., … Wang, Z. (2021). Synergistic effects of amorphous porous materials and anhydrous Na2CO3 on the performance of bricks with high municipal sewage sludge content. Journal of Cleaner Production, 280, 124338. doi:10.1016/j.jclepro.2020.124338

Mozzi, R. L., & Warren, B. E. (1970). The structure of vitreous boron oxide. Journal of Applied Crystallography, 3(4), 251–257. doi:10.1107/s0021889870006143

Pettifer, R. F., Dupree, R., Farnan, I., & Sternberg, U. (1988). NMR determinations of SiOSi bond angle distributions in silica. Journal of Non-Crystalline Solids, 106(1–3), 408–412. doi:10.1016/0022-3093(88)90299-2.

Kien, P. H., Yen, N. V., & Hong, N. V. (2020). The study of structure and dynamics of liquid Al2O3•2SiO2 at higher temperatures. Phase Transitions, 93(2), 274–286. doi:10.1080/01411594.2020.1716354.

Hung, P. K., Vinh, L. T., Van, T. B., Hong, N. V., & Yen, N. V. (2017). Insight into dynamics and microstructure of aluminum-silicate melts from molecular dynamics simulation. Journal of Non-Crystalline Solids, 462, 1–9. doi:10.1016/j.jnoncrysol.2017.02.003.

Full Text: PDF

DOI: 10.28991/HEF-2022-03-02-03


  • There are currently no refbacks.

Copyright (c) 2022 Giap Thi Thuy Trang, Pham Huu Kien, Thonchit Monesaykham, Thidakham NAMMAVONG