Molecular Dynamics Simulation to Investigate the Effect of Al2O3 Doping and Compression on the Structural Properties of Aluminium Silicate Glass
Abstract
Doi: 10.28991/HEF-2022-03-02-03
Full Text: PDF
Keywords
References
Watson, E. B. (1981). Diffusion in magmas at depth in the Earth: The effects of pressure and dissolved H2O. Earth and Planetary Science Letters, 52(2), 291–301. doi:10.1016/0012-821X(81)90184-9.
Totea, A. M., Dorin, I., Laity, P. R., Sabin, J., Conway, B. R., Waters, L., & Asare-Addo, K. (2020). A molecular understanding of magnesium aluminium silicate – drug, drug – polymer, magnesium aluminium silicate – polymer nanocomposite complex interactions in modulating drug release: Towards zero order release. European Journal of Pharmaceutics and Biopharmaceutics, 154, 270–282. doi:10.1016/j.ejpb.2020.07.027.
Vinh, L. T., Hung, P. K., Ba Van, T., & Hong, N. V. (2020). Computer simulation of local microstructure and dynamics in aluminum-silicate melt. Modelling and Simulation in Materials Science and Engineering, 28(3). doi:10.1088/1361-651X/ab6ec6.
Zhou, Q., Shi, Y., Deng, B., Neuefeind, J., & Bauchy, M. (2021). Experimental method to quantify the ring size distribution in silicate glasses and simulation validation thereof. Science Advances, 7(28), 1761. doi:10.1126/sciadv.abh1761.
Shih, Y. T., Sundararaman, S., & Huang, L. (2020). Structural origin of the anomalous density maximum in silica and alkali silicate glasses. Journal of the American Ceramic Society, 103(7), 3942–3953. doi:10.1111/jace.16850.
Ohira, I., Kono, Y., Shibazaki, Y., Kenney-Benson, C., Masuno, A., & Shen, G. (2019). Ultrahigh pressure structural changes in a 60 mol. % Al2O3-40 mol. % SiO2 glass. Geochemical Perspectives Letters, 10, 41–45. doi:10.7185/geochemlet.1913.
Le Losq, C., Neuville, D. R., Florian, P., Henderson, G. S., & Massiot, D. (2014). The role of Al3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts. Geochimica et Cosmochimica Acta, 126, 495–517. doi:10.1016/j.gca.2013.11.010.
Rosales-Sosa, G. A., Masuno, A., Higo, Y., & Inoue, H. Crack-resistant Al2O3–SiO2 glasses. Scientific Reports, 6(1), 1–7.
Zheng, K., Zhang, Z., Yang, F., & Sridhar, S. (2012). Molecular dynamics study of the structural properties of calcium aluminosilicate slags with varying Al2O3/SiO2 ratios. ISIJ International, 52(3), 342–349. doi:10.2355/isijinternational.52.342.
Wilding, M. C., & Benmore, C. J. (2006). Structure of glasses and melts. Reviews in Mineralogy and Geochemistry, 63(1), 275–311. doi:10.2138/rmg.2006.63.12.
Greaves, G. N. (1988). EXAFS and the structure of catalysts. Catalysis Today, 2(5), 581–584. doi:10.1016/0920-5861(88)85021-1.
Stebbins, J. F., & Xu, Z. (1997). NMR evidence for excess non-bridging oxygen in an aluminosilicate glass. Nature, 390(6655), 60–62. doi:10.1038/36312.
Lee, S. K., & Stebbins, J. F. (2000). The Structure of Aluminosilicate Glasses: High-Resolution 17O and 27Al MAS and 3QMAS NMR Study. Journal of Physical Chemistry B, 104(17), 4091–4100. doi:10.1021/jp994273w.
Pask, J. A. (1996). Importance of Starting Materials on Reactions and Phase Equilibria in the Al2O3-SiO2 System. Journal of the European Ceramic Society, 16(2 SPEC. ISS.), 101–108. doi:10.1016/0955-2219(95)00147-6.
Urata, S., Nakamura, N., Tada, T., & Hosono, H. (2021). Molecular dynamics study on the co-doping effect of Al2O3 and fluorine to reduce Rayleigh scattering of silica glass. Journal of the American Ceramic Society, 104(10), 5001–5015. doi:10.1111/jace.17774.
Sen, S., & Youngman, R. E. (2004). High-resolution multinuclear NMR structural study of binary aluminosilicate and other related glasses. Journal of Physical Chemistry B, 108(23), 7557–7564. doi:10.1021/jp031348u.
Weber, R., Sen, S., Youngman, R. E., Hart, R. T., & Benmore, C. J. (2008). Structure of high alumina content A12O3-SiO 2 composition glasses. Journal of Physical Chemistry B, 112(51), 16726–16733. doi:10.1021/jp807964u.
Atila, A., Ghardi, E. M., Ouaskit, S., & Hasnaoui, A. (2019). Atomistic insights into the impact of charge balancing cations on the structure and properties of aluminosilicate glasses. Physical Review B, 100(14). doi:10.1103/PhysRevB.100.144109.
Karki, B. B., Ghosh, D. B., & Bajgain, S. K. (2018). Simulation of silicate melts under pressure. Magmas under Pressure: Advances in High-Pressure Experiments on Structure and Properties of Melts, 419–453. doi:10.1016/B978-0-12-811301-1.00016-2.
Charpentier, T., Okhotnikov, K., Novikov, A. N., Hennet, L., Fischer, H. E., Neuville, D. R., & Florian, P. (2018). Structure of Strontium Aluminosilicate Glasses from Molecular Dynamics Simulation, Neutron Diffraction, and Nuclear Magnetic Resonance Studies. Journal of Physical Chemistry B, 122(41), 9567–9583. doi:10.1021/acs.jpcb.8b05721.
Drewitt, J. W. E., Jahn, S., Sanloup, C., De Grouchy, C., Garbarino, G., & Hennet, L. (2015). Development of chemical and topological structure in aluminosilicate liquids and glasses at high pressure. Journal of Physics Condensed Matter, 27(10). doi:10.1088/0953-8984/27/10/105103.
Wang, Y., Sakamaki, T., Skinner, L. B., Jing, Z., Yu, T., Kono, Y., Park, C., Shen, G., Rivers, M. L., & Sutton, S. R. (2014). Atomistic insight into viscosity and density of silicate melts under pressure. Nature Communications, 5(1), 1–10. doi:10.1038/ncomms4241.
Luo, J., Vargheese, K. D., Tandia, A., Harris, J. T., & Mauro, J. C. (2016). Structural origin of intrinsic ductility in binary aluminosilicate glasses. Journal of Non-Crystalline Solids, 452, 297–306. doi:10.1016/j.jnoncrysol.2016.09.010.
Hong, N. V., Yen, N. V., Lan, M. T., & Hung, P. K. (2014). Coordination and polyamorphism of aluminium silicate under high pressure: Insight from analysis and visualization of molecular dynamics data. Canadian Journal of Physics, 92(12), 1573–1580. doi:10.1139/cjp-2014-0042.
Lodesani, F., Menziani, M. C., Hijiya, H., Takato, Y., Urata, S., & Pedone, A. (2020). Structural origins of the Mixed Alkali Effect in Alkali Aluminosilicate Glasses: Molecular Dynamics Study and its Assessment. Scientific Reports, 10(1), 1–18. doi:10.1038/s41598-020-59875-7.
Van, T. B., Hung, P. K., Vinh, L. T., Yen, N. V., Ha, N. T. T., & San, L. T. (2021). Domain structure, microscopic segregation and dynamics heterogeneity in alumina-silicate liquid. Journal of Non-Crystalline Solids, 552(120457). doi:10.1016/j.jnoncrysol.2020.120457.
Pfleiderer, P., Horbach, J., & Binder, K. (2006). Structure and transport properties of amorphous aluminium silicates: Computer simulation studies. Chemical Geology, 229(1–3), 186–197. doi:10.1016/j.chemgeo.2006.01.020.
Hoang, V. (2007). Dynamical heterogeneity and diffusion in high-density Al2O3•2SiO2 melts. Physica B: Condensed Matter, 400(1–2), 278–286. doi:10.1016/j.physb.2007.07.023.
Liu, Y., Bai, C., Lv, X., & Wei, R. (2015). Molecular Dynamics Simulation on the Influence of Al2O3 on the Slag Structure at 1873 K. Materials Today: Proceedings, 2, S453–S459. doi:10.1016/j.matpr.2015.05.061.
Benitez, T., Rivas Murillo, J. S., de Ligny, D., Travitzky, N., Novaes de Oliveira, A. P., & Hotza, D. (2020). Modeling the effect of the addition of alumina on structural characteristics and tensile deformation response of aluminosilicate glasses. Ceramics International, 46(13), 21657–21666. doi:10.1016/j.ceramint.2020.05.273.
Winkler, A., Horbach, J., Kob, W., & Binder, K. (2004). Structure and diffusion in amorphous aluminum silicate: A molecular dynamics computer simulation. Journal of Chemical Physics, 120(1), 384–393. doi:10.1063/1.1630562.
Kubicki, J. D., & Toplis, M. J. (2002). Molecular orbital calculations on aluminosilicate tricluster molecules: Implications for the structure of aluminosilicate glasses. American Mineralogist, 87(5–6), 668–678. doi:10.2138/am-2002-5-609.
Toplis, M. J., Dingwell, D. B., Hess, K. U., & Lenci, T. (1997). Viscosity, fragility, and configurational entropy of melts along the join SiO2-NaAlSiO4. American Mineralogist, 82(9–10), 979–990. doi:10.2138/am-1997-9-1014.
Toplis, M. J., Dingwell, D. B., & Lenci, T. (1997). Peraluminous viscosity maxima in Na2O-Al2O3-SiO2 liquids: The role of triclusters in tectosilicate melts. Geochimica et Cosmochimica Acta, 61(13), 2605–2612. doi:10.1016/S0016-7037(97)00126-9.
Xue, X., & Kanzaki, M. (1999). NMR Characteristics of Possible Oxygen Sites in Aluminosilicate Glasses and Melts: An ab Initio Study. Journal of Physical Chemistry B, 103(49), 10816–10830. doi:10.1021/jp992108a.
Okuno, M., Zotov, N., Schmücker, M., & Schneider, H. (2005). Structure of SiO2-Al2O3 glasses: Combined X-ray diffraction, IR and Raman studies. Journal of Non-Crystalline Solids, 351(12–13), 1032–1038. doi:10.1016/j.jnoncrysol.2005.01.014.
Yang, F., Zhou, W., Zhu, R., Dai, G., Wang, W., Wang, W., … Wang, Z. (2021). Synergistic effects of amorphous porous materials and anhydrous Na2CO3 on the performance of bricks with high municipal sewage sludge content. Journal of Cleaner Production, 280, 124338. doi:10.1016/j.jclepro.2020.124338
Mozzi, R. L., & Warren, B. E. (1970). The structure of vitreous boron oxide. Journal of Applied Crystallography, 3(4), 251–257. doi:10.1107/s0021889870006143
Pettifer, R. F., Dupree, R., Farnan, I., & Sternberg, U. (1988). NMR determinations of SiOSi bond angle distributions in silica. Journal of Non-Crystalline Solids, 106(1–3), 408–412. doi:10.1016/0022-3093(88)90299-2.
Kien, P. H., Yen, N. V., & Hong, N. V. (2020). The study of structure and dynamics of liquid Al2O3•2SiO2 at higher temperatures. Phase Transitions, 93(2), 274–286. doi:10.1080/01411594.2020.1716354.
Hung, P. K., Vinh, L. T., Van, T. B., Hong, N. V., & Yen, N. V. (2017). Insight into dynamics and microstructure of aluminum-silicate melts from molecular dynamics simulation. Journal of Non-Crystalline Solids, 462, 1–9. doi:10.1016/j.jnoncrysol.2017.02.003.
DOI: 10.28991/HEF-2022-03-02-03
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Giap Thi Thuy Trang, Pham Huu Kien, Thonchit Monesaykham, Thidakham NAMMAVONG