Molecular Adsorption of H2O on TiO2 and TiO2:Y Surfaces

D. D. Nematov, K. T. Kholmurodov, M. A. Husenzoda, A. Lyubchyk, A. S. Burhonzoda

Abstract


In this work, using theoretical calculations within the framework of the density functional theory, taking into account the dispersive VDW interaction, the processes of adsorption and interaction of a water molecule with a TiO2 surface in various configurations are investigated. At the atomic / molecular level, the interactions of a water molecule with a TiO2 surface have been studied for various orientations. The results of calculations within the framework of DFT + VDW show that the adsorption energies of single water molecules in different initial positions on the substrate surface vary from -0.72 to -0.84 eV, and the most stable adsorbate structure is the TiO2 + H2O system upon adsorption of a molecule of water, parallel to the Y axis, because during the adsorption of H2O parallel to the Y axis, some favorable effects are observed in the band structure of titanium dioxide. On the one hand, the band gap decreases to 2.59 eV, and on the other hand, a new energy state appears in the band gap with an energy contribution of 0.17 eV, when water is physisorbed and interacts with a titanium atom at a distance of 2.12 Å and occupies a perpendicular position relative to the surface.

 

Doi: 10.28991/HEF-2022-03-02-07

Full Text: PDF


Keywords


Density of States; Water Adsorption; DFT; Titanium Dioxide; Water Splitting; Surface.

References


Chu, S., Cui, Y., & Liu, N. (2016). The path towards sustainable energy. Nature Materials, 16(1), 16–22. doi:10.1038/nmat4834.

Chu, S., & Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. Nature, 488(7411), 294–303. doi:10.1038/nature11475.

Shen, D., Xiao, M., Zou, G., Liu, L., Duley, W. W., & Zhou, Y. N. (2018). Self-Powered Wearable Electronics Based on Moisture Enabled Electricity Generation. Advanced Materials, 30(18), 1705925. doi:10.1002/adma.201705925.

Shao, C., Ji, B., Xu, T., Gao, J., Gao, X., Xiao, Y., Zhao, Y., Chen, N., Jiang, L., & Qu, L. (2019). Large-Scale Production of Flexible, High-Voltage Hydroelectric Films Based on Solid Oxides. ACS Applied Materials and Interfaces, 11(34), 30927–30935. doi:10.1021/acsami.9b09582.

Mandal, S., Roy, S., Mandal, A., Ghoshal, T., Das, G., Singh, A., & Goswami, D. K. (2020). Protein-Based Flexible Moisture-Induced Energy-Harvesting Devices As Self-Biased Electronic Sensors. ACS Applied Electronic Materials, 2(3), 780–789. doi:10.1021/acsaelm.9b00842.

Shen, D., Duley, W. W., Peng, P., Xiao, M., Feng, J., Liu, L., Zou, G., & Zhou, Y. N. (2020). Moisture-Enabled Electricity Generation: From Physics and Materials to Self-Powered Applications. Advanced Materials, 32(52), 2003722. doi:10.1002/adma.202003722.

Subhoni, M., Kholmurodov, K., Doroshkevich, A., Asgerov, E., Yamamoto, T., Lyubchyk, A., Almasan, V., & Madadzada, A. (2018). Density functional theory calculations of the water interactions with ZrO2 nanoparticles Y2O3 doped. Journal of Physics: Conference Series, 994(1), 994 012013. doi:10.1088/1742-6596/994/1/012013.

Doroshkevich, A. S., Asgerov, E. B., Shylo, A. V., Lyubchyk, A. I., Logunov, A. I., Glazunova, V. A., … Oksengendler, B. L. (2019). Direct conversion of the water adsorption energy to electricity on the surface of zirconia nanoparticles. Applied Nanoscience, 9(8), 1603–1609. doi:10.1007/s13204-019-00979-66.

Zhu, T., & Gao, S. P. (2014). The stability, electronic structure, and optical property of tio 2 polymorphs. Journal of Physical Chemistry C, 118(21), 11385–11396. doi:10.1021/jp412462m.

Zandiehnadem, F., Murray, R. A., & Ching, W. Y. (1988). Electronic structures of three phases of zirconium oxide. Physica B+C, 150(1–2), 19–24. doi:10.1016/0378-4363(88)90099-X.

Sclafani, A., & Herrmann, J. M. (1996). Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions. Journal of Physical Chemistry, 100(32), 13655–13661. doi:10.1021/jp9533584.

Dohnálek, Z., Lyubinetsky, I., & Rousseau, R. (2010). Thermally-driven processes on rutile TiO2(1 1 0)-(1 × 1): A direct view at the atomic scale. Progress in Surface Science, 85(5–8), 161–205. doi:10.1016/j.progsurf.2010.03.001.

Pang, C. L., Lindsay, R., & Thornton, G. (2013). Structure of clean and adsorbate-covered single-crystal rutile TiO 2 surfaces. Chemical Reviews, 113(6), 3887–3948. doi:10.1021/cr300409r.

Thiel, P. A., & Madey, T. E. (1987). The interaction of water with solid surfaces: Fundamental aspects. Surface Science Reports, 7(6–8), 211–385. doi:10.1016/0167-5729(87)90001-X.

Shen, D., Xiao, M., Zou, G., Liu, L., Duley, W. W., & Zhou, Y. N. (2018). Self-Powered Wearable Electronics Based on Moisture Enabled Electricity Generation. Advanced Materials, 30(18), 1705925. doi:10.1002/adma.201705925.

Kurtz, R. L., Stock-Bauer, R., Msdey, T. E., Román, E., & De Segovia, J. L. (1989). Synchrotron radiation studies of H2O adsorption on TiO2(110). Surface Science, 218(1), 178–200. doi:10.1016/0039-6028(89)90626-2.

Duncan, D. A., Allegretti, F., & Woodruff, D. P. (2012). Water does partially dissociate on the perfect TiO 2(110) surface: A quantitative structure determination. Physical Review B - Condensed Matter and Materials Physics, 86(4), 45411. doi:10.1103/PhysRevB.86.045411.

Kumar, N., Kent, P. R. C., Wesolowski, D. J., & Kubicki, J. D. (2013). Modeling water adsorption on rutile (110) using van der waals density functional and DFT+U methods. Journal of Physical Chemistry C, 117(45), 23638–23644. doi:10.1021/jp404052k.

Björneholm, O., Hansen, M. H., Hodgson, A., Liu, L. M., Limmer, D. T., Michaelides, A., Pedevilla, P., Rossmeisl, J., Shen, H., Tocci, G., Tyrode, E., Walz, M. M., Werner, J., & Bluhm, H. (2016). Water at Interfaces. Chemical Reviews, 116(13), 7698–7726. doi:10.1021/acs.chemrev.6b00045.

Setvin, M., Daniel, B., Aschauer, U., Hou, W., Li, Y. F., Schmid, M., Selloni, A., & Diebold, U. (2014). Identification of adsorbed molecules via STM tip manipulation: CO, H2O, and O2 on TiO2 anatase (101). Physical Chemistry Chemical Physics, 16(39), 21524–21530. doi:10.1039/c4cp03212h.

Schwarz, K., & Blaha, P. (2003). Solid state calculations using WIEN2k. Computational Materials Science, 28(2), 259–273. doi:10.1016/S0927-0256(03)00112-5.

Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A), 1133–1965. doi:10.1103/PhysRev.140.A1133.

Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 78(7), 1396–1396. doi:10.1103/physrevlett.78.1396.

Sorescu, D. C., Thompson, D. L., Hurley, M. M., & Chabalowski, C. F. (2002). First-principles calculations of the adsorption, diffusion, and dissociation of a CO molecule on the Fe(100) surface. Physical Review B - Condensed Matter and Materials Physics, 66(3), 035416. doi:10.1103/PhysRevB.66.035416.

Kannemann, F. O., & Becke, A. D. (2010). Van der waals interactions in density-functional theory: Intermolecular complexes. Journal of Chemical Theory and Computation, 6(4), 1081–1088. doi:10.1021/ct900699r.

Zaremba, E., & Kohn, W. (1976). Van der Waals interaction between an atom and a solid surface. Physical Review B, 13(6), 2270–2285. doi:10.1103/PhysRevB.13.2270.

Liebsch, A. (1986). Density-functional calculation of the dynamic image plane at a metal surface: Reference-plane position of He- and H2-metal van der Waals interaction. Physical Review B, 33(10), 7249–7251. doi:10.1103/PhysRevB.33.7249.

Elahifard, M., Padervand, M., Yasini, S., & Fazeli, E. (2016). The effect of double impurity cluster of Ni and Co in TiO2 bulk; a DFT study. Journal of Electroceramics, 37(1–4), 79–84. doi:10.1007/s10832-016-0027-0.

Fujishima, A., Zhang, X., & Tryk, D. A. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63(12), 515–582. doi:10.1016/j.surfrep.2008.10.001.

Esfandfard, S. M., Elahifard, M. R., Behjatmanesh-Ardakanii, R., & Kargar, H. (2018). DFT study on oxygen-vacancy stability in rutile/anatase TiO2: Effect of cationic substitutions. Physical Chemistry Research, 6(3), 547–563. doi:10.22036/pcr.2018.128713.1481.

Davlatshoevich, N. D. (2021). Investigation Optical Properties of the Orthorhombic System CsSnBr3-xIx: Application for Solar Cells and Optoelectronic Devices. Journal of Human, Earth, and Future, 2(4), 404–411. doi:10.28991/hef-2021-02-04-08.

Park, H., Kim, H. Il, Moon, G. H., & Choi, W. (2016). Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy and Environmental Science, 9(2), 411–433. doi:10.1039/c5ee02575c.

Macyk, W., Szaciłowski, K., Stochel, G., Buchalska, M., Kuncewicz, J., & Łabuz, P. (2010). Titanium (IV) complexes as direct TiO2 photosensitizers. Coordination Chemistry Reviews, 254(21-22), 2687-2701. doi:10.1016/j.ccr.2009.12.037.

Elahifard, M., Heydari, H., Behjatmanesh-Ardakani, R., Peik, B., & Ahmadvand, S. (2020). A computational study on the effect of Ni impurity and O-vacancy on the adsorption and dissociation of water molecules on the surface of anatase (101). Journal of Physics and Chemistry of Solids, 136, 109176. doi:10.1016/j.jpcs.2019.109176.

Cadi-Essadek, A., Roldan, A., & de Leeuw, N. H. (2016). Density functional theory study of the interaction of H2O, CO2 and CO with the ZrO2 (111), Ni/ZrO2 (111), YSZ (111) and Ni/YSZ (111) surfaces. Surface Science, 653, 153–162. doi:10.1016/j.susc.2016.06.008.

Lee, S., Jang, H., Lee, H., Yoon, D., & Jeon, S. (2019). Direct Fabrication of a Moisture-Driven Power Generator by Laser-Induced Graphitization with a Gradual Defocusing Method. ACS Applied Materials and Interfaces, 11(30), 26970–26975. doi:10.1021/acsami.9b08056.


Full Text: PDF

DOI: 10.28991/HEF-2022-03-02-07

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Dilshod Nematov