Acid Whey Valorization for Biotechnological Lactobionic Acid Bio-production

Vikram R. Narala, Jelena Zagorska, Inga Sarenkova, Inga Ciprovica, Kristine Majore

Abstract


The dairy industry is facing a problem associated with 1.6 billion tons of acid whey per year as a waste stream. The extended amount of acid whey has encouraged studies for novel approaches of acid whey utilization. The production of lactobionic acid (LBA) using dairy waste has been in rapid demand as an economically feasible and environmentally friendly approach. The composition of acid whey makes lactose conversion into LBA by Pseudomonas taetrolens complicated. Therefore, the aim of the current research was to evaluate factors (quality of whey (salts, protein concentration, pH), volume of inoculum, and cultivation time) with the purpose of increasing the suitability of acid whey for biotechnological LBA production. LBA production was performed in a 4L bioreactor, which was equipped with a pH electrode and a dissolved oxygen electrode. The whole experiment was performed at a temperature of 30 °C under 350 rpm agitation. The continuous aeration was set at 0.5 L/min. The current study presents the study of acid and sweet whey combinations in different ratios (100:0; 50:50; 60:40, 70:30, 80:20, respectively) inoculated with 10% or 30% v/v of fresh P. taetrolens inoculum reaching up to 59.9 ± 1% LBA yield during cultivation. Increasing protein and pH in a substrate slows down the lactose converting ability of P. taetrolens. Results demonstrated that increasing the acid whey amount in a substrate can affect the LBA yield, and a combination of sweet and acid whey could be a good solution for biotechnological LBA production using dairy waste.

 

Doi: 10.28991/HEF-SP2022-01-04

Full Text: PDF


Keywords


Aacid Whey; Bioreactor; Pseudomonas Taetrolens; Lactose Oxidation; Lactobionic Acid.

References


Bansal, N., Bhandari, B. (2016). Functional Milk Proteins: Production and Utilization—Whey-Based Ingredients. Advanced Dairy Chemistry. Springer, New York, United States. doi:10.1007/978-1-4939-2800-2_3.

Zotta, T., Solieri, L., Iacumin, L., Picozzi, C., & Gullo, M. (2020). Valorization of cheese whey using microbial fermentations. Applied Microbiology and Biotechnology, 104(7), 2749–2764. doi:10.1007/s00253-020-10408-2.

Chandrapala, J., Duke, M. C., Gray, S. R., Weeks, M., Palmer, M., & Vasiljevic, T. (2017). Strategies for maximizing removal of lactic acid from acid whey – Addressing the un-processability issue. Separation and Purification Technology, 172, 489–497. doi:10.1016/j.seppur.2016.09.004.

Rocha-Mendoza, D., Kosmerl, E., Krentz, A., Zhang, L., Badiger, S., Miyagusuku-Cruzado, G., Mayta-Apaza, A., Giusti, M., Jiménez-Flores, R., & García-Cano, I. (2021). Invited review: Acid whey trends and health benefits. Journal of Dairy Science, 104(2), 1262–1275. doi:10.3168/jds.2020-19038.

Menchik, P., Zuber, T., Zuber, A., & Moraru, C. I. (2019). Short communication: Composition of coproduct streams from dairy processing: Acid whey and milk permeate. Journal of Dairy Science, 102(5), 3978–3984. doi:10.3168/jds.2018-15951.

Merkel, A., Voropaeva, D., & Ondrušek, M. (2021). The impact of integrated nanofiltration and electrodialytic processes on the chemical composition of sweet and acid whey streams. Journal of Food Engineering, 298, 110500. doi:10.1016/j.jfoodeng.2021.110500.

Bolwig, S., Brekke, A., Strange, L., & Strøm-Andersen, N. (2019). Valorisation of whey: A tale of two Nordic dairies. From Waste to Value: Valorisation Pathways for Organic Waste Streams in Circular Bioeconomies (1st Ed.). 162-186. Routledge, Abingdon, United Kingdom. doi:10.4324/9780429460289-9.

Bylund, G. (2015). Dairy processing handbook (2nd Ed.). Tetra Pak, Lund, Sweden.

Alonso, S., Rendueles, M., & Díaz, M. (2013). Bio-production of lactobionic acid: Current status, applications and future prospects. Biotechnology Advances, 31(8), 1275–1291. doi:10.1016/j.biotechadv.2013.04.010.

De Giorgi, S., Raddadi, N., Fabbri, A., Gallina Toschi, T., & Fava, F. (2018). Potential use of ricotta cheese whey for the production of lactobionic acid by Pseudomonas taetrolens strains. New Biotechnology, 42, 71–76. doi:10.1016/j.nbt.2018.02.010.

Minal, N., Bharwade, Balakrishnan, S., Chaudhary, N. N., & Jain, A. K. (2017). Lactobionic Acid: Significance and Application in Food and Pharmaceutical. International Journal of Fermented Foods, 6(1), 25. doi:10.5958/2321-712x.2017.00003.5.

Cardoso, T., Marques, C., Dagostin, J. L. A., & Masson, M. L. (2019). Lactobionic Acid as a Potential Food Ingredient: Recent Studies and Applications. Journal of Food Science, 84(7), 1672–1681. doi:10.1111/1750-3841.14686.

Stodola, F. H., & Lockwood, L. B. (1947). the Oxidation of Lactose and Maltose To Bionic Acids By Pseudomonas. Journal of Biological Chemistry, 171(1), 213–221. doi:10.1016/s0021-9258(17)41119-7.

Alonso, S., Rendueles, M., & Díaz, M. (2011). Efficient lactobionic acid production from whey by Pseudomonas taetrolens under pH-shift conditions. Bioresource Technology, 102(20), 9730–9736. doi:10.1016/j.biortech.2011.07.089.

Alonso, S., Rendueles, M., & Díaz, M. (2012). Role of dissolved oxygen availability on lactobionic acid production from whey by Pseudomonas taetrolens. Bioresource Technology, 109, 140–147. doi:10.1016/j.biortech.2012.01.045.

Gutiérrez, L. F., Bazinet, L., Hamoudi, S., & Belkacemi, K. (2013). Production of lactobionic acid by means of a process comprising the catalytic oxidation of lactose and bipolar membrane electrodialysis. Separation and Purification Technology, 109, 23–32. doi:10.1016/j.seppur.2013.02.017.

Sarenkova, I., Ciprovica, I., & Cinkmanis, I. (2019). Effect of Different Salts on Pseudomonas taetrolens’ Ability to Lactobionic Acid Production. International Journal of Biological, 13(7), 208–213.

Sarenkova, I., Ciprovica, I., & Cinkmanis, I. (2019). The effect of concentrated whey solids on Lactobionic acid production by Pseudomonas Taetrolens. Baltic Conference on Food Science and Technology: Conference Proceedings, 250–253. doi:10.22616/foodbalt.2019.030.

Alonso, S., Rendueles, M., & Díaz, M. (2017). Tunable decoupled overproduction of lactobionic acid in Pseudomonas taetrolens through temperature-control strategies. Process Biochemistry, 58, 9–16. doi:10.1016/j.procbio.2017.04.034.

Alonso, S., Rendueles, M., & Díaz, M. (2015). Simultaneous production of lactobionic and gluconic acid in cheese whey/glucose co-fermentation by Pseudomonas taetrolens. Bioresource Technology, 196, 314–323. doi:10.1016/j.biortech.2015.07.092.

Goderska, K., Szwengiel, A., & Czarnecki, Z. (2014). The utilization of Pseudomonas taetrolens to produce lactobionic acid. Applied Biochemistry and Biotechnology, 173(8), 2189–2197. doi:10.1007/s12010-014-1024-x.

Miyamoto, Y., Ooi, T., & Kinoshita, S. (2000). Production of lactobionic acid from whey by Pseudomonas sp. LS13-1. Biotechnology Letters, 22(5), 427–430. doi:10.1023/A:1005617903152.

Alonso, S., Rendueles, M., & Díaz, M. (2013). Feeding strategies for enhanced lactobionic acid production from whey by Pseudomonas taetrolens. Bioresource Technology, 134, 134–142. doi:10.1016/j.biortech.2013.01.145.

Zolnere, K., Liepins, J., & Ciprovica, I. (2017). The impact of calcium ions on commercially available β-galactosidase. Baltic Conference on Food Science and Technology FOODBALT “Food for consumer well-being”. doi:10.22616/foodbalt.2017.017.

Harrison, S. T. L. (2011). 2.44 - Cell Disruption. Comprehensive Biotechnology (2nd Ed.). Academic Press, Massachusetts, United States. doi: 10.1016/B978-0-08-088504-9.00127-6.

Sachan, S., Chandra, V., Yadu, A., & Singh, A. (2017). Cobalt has Enhancing Effect on Extracellular Lipases Isolated from Pseudomonas aeroginosa JCM5962(T). International Journal of PharmTech Research, 10(1), 45–49. doi:10.20902/ijptr.2017.1016.

Durham, R. J., & Hourigan, J. A. (2007). Waste management and co-product recovery in dairy processing. Handbook of waste management and co-product recovery in food processing, 332-387. Woodhead Publishing, Swaston, United Kingdom. doi:10.1533/9781845692520.4.332.

De Vuyst, L., Vandamme, E.J. (1994). Antimicrobial Potential of Lactic Acid Bacteria. Bacteriocins of Lactic Acid Bacteria. Springer, Boston, United States. doi:10.1007/978-1-4615-2668-1_3.

Guerra, N. P., Rua, M. L., & Pastrana, L. (2001). Nutritional factors affecting the production of two bacteriocins from lactic acid bacteria on whey. International Journal of Food Microbiology, 70(3), 267–281. doi:10.1016/S0168-1605(01)00551-7.


Full Text: PDF

DOI: 10.28991/HEF-SP2022-01-04

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 VIKRAM REDDY NARALA