Investigation of Colour Naturalness in Lighting: A Comparative Study

Andrew Neil Chalmers


This paper is concerned with improving the acceptability of LED light sources, since their long life and high efficiency have contributed to their widespread adoption in many applications. Concerns remain, however, in relation to their colour properties. The purpose of this paper is therefore to promote discussion of the naturalness concept among the users, specifiers, and manufacturers of lighting sources and systems, in the hope that this may provide a valid pathway to the classification of light-source colour properties. An overview is presented of experimental investigations aimed at establishing visually meaningful metrics for the colour quality of various light sources, predominantly LEDs. All the cases presented here included colour naturalness as at least one of the dimensions studied, and one has to conclude that naturalness is a property of great interest to lighting engineers and scientists. Because the majority of naturalness studies have invoked the use of pre-existing colour quality metrics, the paper also includes an overview of some of the major such metrics and their features. The paper also identifies two important concerns relating to Naturalness: the need to agree on an acceptable definition of colour naturalness in lighting; and how to standardize or compare the results of disparate investigations. Finally, the paper proposes the concept of a colour fidelity continuum, in the ultimate hope of uniting the various approaches to lighting colour quality.


Doi: 10.28991/HEF-2022-03-02-04

Full Text: PDF


Clean Technology; LED Lighting; Colour in Lighting; Colour Rendition; Colour Quality; Colour Naturalness.


Bridgelux Inc. (2020). Average Spectral Difference, a new method to make objective comparisons of naturalness between light sources. Bridgelux White Paper, 1-16, California, United Stated.

CIE 13.3-1995. (1995) Method of measuring and specifying colour rendering properties of light sources. CIE (Commission Internationale de l´Eclairage), 1-16, Vienna, Austria.

Philips Lighting. (2021). Dynamic Lighting. Available online: (accessed on May 2022).

Smet, K. A. G., Ryckaert, W. R., Pointer, M. R., Deconinck, G., & Hanselaer, P. (2012). A memory colour quality metric for white light sources. Energy and Buildings, 49, 216–225. doi:10.1016/j.enbuild.2012.02.008.

Van Trigt, C. (1999). Color rendering, a reassessment. Color Research & Application., 24(3), 197-206. doi:10.1002/(SICI)1520-6378(199906)24:3%3C197::AID-COL6%3E3.0.CO;2-S

Davis, W. & Ohno, Y (2010). Color quality scale. Optical Engineering, 49(3), 033602. doi:10.1117/1.3360335.

IES TM-30-15. (2015). IES Method for Evaluating Light Source Color Rendition. Illuminating Engineering Society of North America (IES), New York, United States.

CIE 224-2017. (2017). Colour Fidelity Index for accurate scientific use. CIE (Commission Internationale de l´Eclairage), 1-44 Vienna, Austria.

Smet, K. (2018). IES TM-30. Face Seminar Session Boom, October 2-3, 2018, Light & Lighting Laboratory, Gent, Belgium. Available online: (accessed on April 2022).

Smet, K. A. G., & Hanselaer, P. (2016). Memory and preferred colours and the colour rendition of white light sources. Lighting Research and Technology, 48(4), 393–411. doi:10.1177/1477153514568584.

Ebner, F., & Fairchild, M. D. (1998). Development and testing of a color space (IPT) with improved hue uniformity. Final Program and Proceedings - IS and T/SID Color Imaging Conference, 8–13.

De Ridder, H., Blommaert, F. J. J., & Fedorovskaya, E. A. (1995). Naturalness and image quality: Chroma and hue variation in color images of natural scenes. Human Vision, Visual Processing and Digital Display VI, San Jose. SPIE, 2411, 51–61.

Yendrikhovskij, S. N., Blommaert, F. J. J., & De Ridder, H. (1999). Color reproduction and the naturalness constraint. Color Research and Application, 24(1), 52–67. doi:10.1002/(SICI)1520-6378(199902)24:1<52::AID-COL10>3.0.CO;2-4.

Jost-Boissard, S., Fontoynont, M., & Blanc-Gonnet, J. (2009). Perceived lighting quality of LED sources for the presentation of fruit and vegetables. Journal of Modern Optics, 56(13), 1420–1432. doi:10.1080/09500340903056550.

Jost-Boissard, S., Avouac, P., & Fontoynont, M. (2015). Assessing the colour quality of LED sources: Naturalness, attractiveness, colourfulness and colour difference. Lighting Research and Technology, 47(7), 769–794. doi:10.1177/1477153514555882.

Smet, K. A. G., Ryckaert, W. R., Pointer, M. R., Deconinck, G., & Hanselaer, P. (2010). Memory colours and colour quality evaluation of conventional and solid-state lamps. Optics Express, 18(25), 26229¬¬–26244. doi:10.1364/oe.18.026229.

Smet, K., Ryckaert, W. R., Pointer, M. R., Deconinck, G., & Hanselaer, P. (2011). Correlation between color quality metric predictions and visual appreciation of light sources. Optics Express, 19(9), 8151–8166. doi:10.1364/oe.19.008151.

Nascimento, S. M. C., & Masuda, O. (2012). Psychophysical optimization of lighting spectra for naturalness, preference, and chromatic diversity. Journal of the Optical Society of America A, 29(2), A144–A151. doi:10.1364/josaa.29.00a144.

Islam, M. S., Dangol, R., Hyvärinen, M., Bhusal, P., Puolakka, M., & Halonen, L. (2013). User preferences for LED lighting in terms of light spectrum. Lighting Research and Technology, 45(6), 641–665. doi:10.1177/1477153513475913.

Dangol, R., Islam, M., Lisc, M. H., Bhusal, P., Puolakka, M., & Halonen, L. (2013). Subjective preferences and colour quality metrics of LED light sources. Lighting Research and Technology, 45(6), 666–688. doi:10.1177/1477153512471520.

Dangol, R., Islam, M. S., Hyvärinen, M., Bhushal, P., Puolakka, M., & Halonen, L. (2015). User acceptance studies for LED office lighting: Preference, naturalness and colourfulness. Lighting Research and Technology, 47(1), 36–53. doi:10.1177/1477153513514424.

Bhusal, P., & Dangol, R. (2017). Performance of different metrics proposed to CIE TC 1-91. International Journal of Sustainable Lighting, 19(2), 91–103. doi:10.26607/ijsl.v19i2.36.

Khanh, T. Q., Bodrogi, P., Vinh, Q. T., & Stojanovic, D. (2017). Colour preference, naturalness, vividness and colour quality metrics, Part 1: Experiments in a room. Lighting Research and Technology, 49(6), 697–713. doi:10.1177/1477153516643359.

Khanh, T. Q., Bodrogi, P., Vinh, Q. T., & Stojanovic, D. (2017). Colour preference, naturalness, vividness and colour quality metrics, Part 2: Experiments in a viewing booth and analysis of the combined dataset. Lighting Research & Technology, 49(6), 714-726. doi:10.1177/1477153516643570.

Khanh, T. Q., & Bodrogi, P. (2018). Colour preference, naturalness, vividness and colour quality metrics, Part 3: Experiments with makeup products and analysis of the complete warm white dataset. Lighting Research and Technology, 50(2), 218–236. doi:10.1177/1477153516669558.

Khanh, T. Q., Bodrogi, P., Vinh, Q. T., Guo, X., & Anh, T. T. (2018). Colour preference, naturalness, vividness and colour quality metrics, Part 4: Experiments with still life arrangements at different correlated colour temperatures. Lighting Research and Technology, 50(6), 862–879. doi:10.1177/1477153517700705.

Royer, M. P., Wilkerson, A., Wei, M., Houser, K., & Davis, R. (2017). Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape. Lighting Research and Technology, 49(8), 966–991. doi:10.1177/1477153516663615.

Esposito, T., & Houser, K. (2019). Models of colour quality over a wide range of spectral power distributions. Lighting Research and Technology, 51(3), 331–352. doi:10.1177/1477153518765953.

Royer, M. P., Wei, M., Wilkerson, A., & Safranek, S. (2020). Experimental validation of colour rendition specification criteria based on ANSI/IES TM-30-18. Lighting Research and Technology, 52(3), 323–349. doi:10.1177/1477153519857625.

Livingston, J., Royer, M., Whitehead, L. (2020). Spectral Similarity as a Measure of Naturalness? FIRES Forum 11 September 2020, Illuminating Engineering Society. Available online: (accessed on April 2022).

Crawford, B. H. (1963). The colour rendering properties of illuminants: The application of psychophysical measurements to their evaluation. British Journal of Applied Physics, 14(6), 319–328. doi:10.1088/0508-3443/14/6/302.

Goodman, T. (2008). Measurement of Naturalness. 12th IMEKO Man, Science and Measurement Symposium, September 3-5, Annecy, France.

Full Text: PDF

DOI: 10.28991/HEF-2022-03-02-04


  • There are currently no refbacks.

Copyright (c) 2022 Andrew Neil Chalmers