Modeling the Semivariogram of Climatic Scenario around Rivers by Using Stream Network Mapping and Hydrological Indicator

L. Omolayo Agashua, B. Dorcas Oluyemi-Ayibiowu, N. Isioma Ihimekpen, E. Christopher Igibah

Abstract


Precipitation erosivity propels detrimental hydrological happenings with substantial eco-friendly and socio-economic influences. The conception of the precipitation-vegetation interface is very vital for implementing acclimatization and mitigation techniques for terrestrial bionetworks. Numerous investigations have reconnoitered the spatial correlation of precipitation-vegetation context along the season-precipitation quantity gradient. Here, comprehensive scrutiny of spatio-temporal patterns of climatology-vegetation response to seasonal variability incongruities in River Ikpoba, southern Nigeria, using principal component scrutiny (PCS), semivariogram, cross-validation statistics, spatial distribution mapping, and hydrological indicators for multi-source climatic datasets for pre-impact flow (1913–1966) and post-impact flow (1967–2022). PCS outcomes reveal seven PCs whose eigenvalues were greater than one were hauled out of the twenty-five variables. The River Ikpoba water quality variables displayed a moderately strong rate of spatial reliance, which made it possible to create the spatial distribution map for the carefully chosen water quality variables. Results from further scrutiny of the river Ikpoba flow duration curve show the highest flow rate value between 900–1000cms for the month of October. The post-impact flow's highest value was 65cms in 2008, whereas the pre-impact flow was 64cms. Likewise, 90 days’ minimum highest flow rate was 250cms, 30 days was 1180cms, 7 days was 105cms, and 1 day was 105cms. Whereas the maximum for 1 day was 7200cms, 3 days’ value was 6400cms and 7 days' was 4500cms. This indicates that as the day progressed, the flow rate was increasing for a consecutive 30 days at a low flow rate, but at 90 days it declined. As the day progresses, the values for the maximum value decrease.

 

Doi: 10.28991/HEF-2022-03-01-02

Full Text: PDF


Keywords


Distribution Mapping; Impact Flow; Spatial Reliance; Geostatistical; Contagions; Hydrological Indicator; River.

References


Ciupak, M., Ozga-zieliński, B., Tokarczyk, T., & Adamowski, J. (2021). A probabilistic model for maximum rainfall frequency analysis. Water (Switzerland), 13(19), 2688–2695. doi:10.3390/w13192688.

Yuan, J., Emura, K., Farnham, C., & Alam, M. A. (2018). Frequency analysis of annual maximum hourly precipitation and determination of best fit probability distribution for regions in Japan. Urban Climate, 24, 276–286. doi:10.1016/j.uclim.2017.07.008.

Igibah, E. C., Agashua, L. O., & Sadiq, A. A. (2020). Hydro-geochemical features and groundwater attribute evaluation in North - central Abuja, Nigeria. Scientific African, 8, 10–21. doi:10.1016/j.sciaf.2020.e00324.

Igibah, C. E., & Tanko, J. A. (2019). Assessment of urban groundwater quality using Piper trilinear and multivariate techniques: a case study in the Abuja, North-central, Nigeria. Environmental Systems Research, 8(1), 1–15. doi:10.1186/s40068-019-0140-6.

Ogwueleka, T. C., & Christopher, I. E. (2020). Hydrochemical interfaces and spatial assessment of Usuma River water quality in North-Central Nigeria. Scientific African, 8, 1–18. doi:10.1016/j.sciaf.2020.e00371.

Igibah, E. C., Amu, O. O., Agashua, L. O., & Adetayo, O. A. (2021). Hydro-geochemical autographs, attribute indicators and health threat evaluation of Fluoride and Ironic elements variability in ground water in Abuja North-central Nigeria. Fuel Communications, 10, 100048. doi:10.1016/j.jfueco.2021.100048.

Amu, O. O., Amu, E. O., Igibah, E. C., & Agashua, L. O. (2021). Human health risk evaluation of sodium and ironic elements variability in ground water: A case study of Abuja North, Nigeria. Fuel Communications, 10, 100041. doi:10.1016/j.jfueco.2021.100041.

Ablain, M., Jugier, R., Marti, F., Dibarboure, G., Couhert, A., Meyssignac, B., & Cazenave, A. (2020). Benefit of a second calibration phase to estimate the relative global and regional mean sea level drifts between Jason-3 and Sentinel-6a. Earth and Space Science Open Archive, 1, 1–10. doi:10.1002/essoar.10502856.2.

Aura, C. M., Nyamweya, C. S., Owili, M., Gichuru, N., Kundu, R., Njiru, J. M., & Ntiba, M. J. (2020). Checking the pulse of the major commercial fisheries of Lake Victoria Kenya, for sustainable management. Fisheries Management and Ecology, 27(4), 314–324. doi:10.1111/fme.12414.

Ablain, M., Meyssignac, B., Zawadzki, L., Jugier, R., Ribes, A., Spada, G., Benveniste, J., Cazenave, A., & Picot, N. (2019). Uncertainty in satellite estimates of global mean sea-level changes, trend and acceleration. Earth System Science Data, 11(3), 1189–1202. doi:10.5194/essd-11-1189-2019.

Okonofua, E. S., Nwadialo, I. B., & Ekun, M. O. (2019). Modelling Ikpoba River Water Quality Using Principal Component Analysis (Pca) Method. Journal of Civil Engineering, Science and Technology, 10(1), 59–74. doi:10.33736/jcest.1083.2019.

Dunn, R., Lief, C., Peng, G., Wright, W., Baddour, O., Donat, M., Dubuisson, B., Legeais, J. F., Siegmund, P., Silveira, R., Wang, X. L., & Ziese, M. (2021). Stewardship maturity assessment tools for modernization of climate data management. Data Science Journal, 20(1), 1–20. doi:10.5334/dsj-2021-007.

Bonnefond, P., Exertier, P., Laurain, O., Guinle, T., & Féménias, P. (2021). Corsica: A 20-Yr multi-mission absolute altimeter calibration site. Advances in Space Research, 68(2), 1171–1186. doi:10.1016/j.asr.2019.09.049.

Couhert, A., Mercier, F., Moyard, J., & Biancale, R. (2018). Systematic Error Mitigation in DORIS-Derived Geocenter Motion. Journal of Geophysical Research: Solid Earth, 123(11), 10,142-10,161. doi:10.1029/2018JB015453.

Fasullo, J. T., & Nerem, R. S. (2018). Altimeter-era emergence of the patterns of forced sea-level rise in climate models and implications for the future. Proceedings of the National Academy of Sciences of the United States of America, 115(51), 12944–12949. doi:10.1073/pnas.1813233115.

Ilaboya, I. R., Oti, E. O., Ekoh, G. O., Umukoro, L. O., & Enamuotor, B. O. (2014). Assessment of water quality index of some selected boreholes around dump sites in Nigeria. International Journal of Environmental Monitoring and Protection, 1(2), 47-55.

Maghsood, F. F., Moradi, H., Bavani, A. R. M., Panahi, M., Berndtsson, R., & Hashemi, H. (2019). Climate change impact on flood frequency and source area in northern Iran under CMIP5 scenarios. Water (Switzerland), 11(2), 1–21. doi:10.3390/w11020273.

Benka-Coker, M. O., & Ojior, O. O. (1995). Effect of slaughterhouse wastes on the water quality of Ikpoba River, Nigeria. Bioresource Technology, 52(1), 5–12. doi:10.1016/0960-8524(94)00139-r.

Melet, A., Buontempo, C., Mattiuzzi, M., Salamon, P., Bahurel, P., Breyiannis, G., Burgess, S., Crosnier, L., Le Traon, P. Y., Mentaschi, L., Nicolas, J., Solari, L., Vamborg, F., & Voukouvalas, E. (2021). European Copernicus Services to Inform on Sea-Level Rise Adaptation: Current Status and Perspectives. Frontiers in Marine Science, 8, 1–8. doi:10.3389/fmars.2021.703425.

Legeais, J. F., Ablain, M., Zawadzki, L., Zuo, H., Johannessen, J. A., Scharffenberg, M. G., Fenoglio-Marc, L., Joana Fernandes, M., Baltazar Andersen, O., Rudenko, S., Cipollini, P., Quartly, G. D., Passaro, M., Cazenave, A., & Benveniste, J. (2018). An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative. Earth System Science Data, 10(1), 281–301. doi:10.5194/essd-10-281-2018.

Loeb, N. G., Thorsen, T. J., Norris, J. R., Wang, H., & Su, W. (2018). Changes in Earth’s energy budget during and after the “Pause” in global warming: An observational perspective. Climate, 6(3), 62–74. doi:10.3390/cli6030062.

Ekhaise, F. O., & Anyasi, C. C. (2005). Influence of breweries effluent discharge on the microbiological and physicochemical quality of Ikpoba River, Nigeria. African Journal of Biotechnology, 4(10). 1062–1065.

USEPA. (2009). Impervious Cover, Ecosystems Research Division.U.S. Environmental Protection Agency, Athens, Georgia, United States.

Haghighi, A.T., & Kløve, B. (2015). Development of monthly optimal flow regimes for allocated environmental flow considering natural flow regimes and several surface water protection targets. Ecological Engineering, 82, 390–399. doi:10.1016/j.ecoleng.2015.05.035.

Mertikas, S. P., Donlon, C., Féménias, P., Mavrocordatos, C., Galanakis, D., Tripolitsiotis, A., Frantzis, X., Tziavos, I. N., Vergos, G., & Guinle, T. (2018). Fifteen years of Cal/Val service to reference altimetry missions: Calibration of satellite altimetry at the permanent facilities in Gavdos and Crete, Greece. Remote Sensing, 10(10), 1557–1566. doi:10.3390/rs10101557.

Richter, B. D., Benoit, K., Dugan, J., Getacho, G., LaRoe, N., Moro, B., … Townsend, A. (2020). Decoupling Urban Water Use and Growth in Response to Water Scarcity. Water, 12(10), 2868. doi:10.3390/w12102868

IPCC. (2022). The Ocean and Cryosphere in a Changing Climate. (Eds.)H.O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, & E., The Ocean and Cryosphere in a Changing Climate. IPCC. doi:10.1017/9781009157964.


Full Text: PDF

DOI: 10.28991/HEF-2022-03-01-02

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Ngozi Isioma Ihimekpen, Rudolph Idowu Ilaboya, Christopher Ehizemhen Igibah