Investigation Optical Properties of the Orthorhombic System CsSnBr3-xIx: Application for Solar Cells and Optoelectronic Devices

Nematov Dilshod Davlatshoevich

Abstract


In this work, to study the optical properties of orthorhombic perovskites of the CsSnBr3-xIx system, spin-orbital and spin-polarized quantum chemical calculations were carried out in the framework of the density functional theory. The effects of electron exchange correlation were taken into account by the modified Becke-Jones exchange-correlation potential (mBJ). It has been established that with an increase in the iodine concentration, the absorption capacity and photoconductivity of these semiconductors increase. Other optical properties were also calculated, such as the real and imaginary parts of the dielectric function, refractive indices, energy loss spectrum, extinction coefficients, and reflection coefficients. The high absorption of these compounds in the infrared, visible and ultraviolet energy ranges allows the use of these perovskites in optical and optoelectronic devices operating in all spectral ranges by controlling and changing their content.

 

Doi: 10.28991/HEF-2021-02-04-08

Full Text: PDF


Keywords


Density Functional Theory; Optical Band Gap; Perovskite; Optical Absorption; Photoconductivity; Dielectric Constant; Energy; Reflectivity.

References


Mathur, N., & Littlewood, P. (2003). Mesoscopic texture in manganites. Physics Today, 56(1), 25–30. doi:10.1063/1.1554133.

Moskvin, A. S., Makhnev, A. A., Nomerovannaya, L. V., Loshkareva, N. N., & Balbashov, A. M. (2010). Interplay of p-d and d-d charge transfer transitions in rare-earth perovskite manganites. Physical Review B - Condensed Matter and Materials Physics, 82(3), 35106. doi:10.1103/PhysRevB.82.035106.

Weeks, C., & Franz, M. (2010). Topological insulators on the Lieb and perovskite lattices. Physical Review B - Condensed Matter and Materials Physics, 82(8), 85310. doi:10.1103/PhysRevB.82.085310.

Murtaza, G., Ahmad, I., Amin, B., Afaq, A., Maqbool, M., Maqssod, J., Khan, I., & Zahid, M. (2011). Investigation of structural and optoelectronic properties of BaThO 3. Optical Materials, 33(3), 553–557. doi:10.1016/j.optmat.2010.10.052.

Kagan, C. R., Mitzi, D. B., & Dimitrakopoulos, C. D. (1999). Organic-inorganic hybrid materials as semiconducting channels in thin- film field-effect transistors. Science, 286(5441), 945–947. doi:10.1126/science.286.5441.945.

Green, M., Dunlop, E., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N., & Hao, X. (2021). Solar cell efficiency tables (version 57). Progress in Photovoltaics: Research and Applications, 29(1), 3–15. doi:10.1002/pip.3371.

Clark, S. J., Flint, C. D., & Donaldson, J. D. (1981). Luminescence and electrical conductivity of CsSnBr3, and related phases. Journal of Physics and Chemistry of Solids, 42(3), 133–135. doi:10.1016/0022-3697(81)90072-X.

Parry, D. E., Tricker, M. J., & Donaldson, J. D. (1979). The electronic structure of CsSnBr3 and related trihalides; Studies using XPS and band theory. Journal of Solid State Chemistry, 28(3), 401–408. doi:10.1016/0022-4596(79)90092-6.

Shum, K., Chen, Z., Qureshi, J., Yu, C., Wang, J. J., Pfenninger, W., Vockic, N., Midgley, J., & Kenney, J. T. (2010). Synthesis and characterization of CsSnI3 thin films. Applied Physics Letters, 96(22), 221903. doi:10.1063/1.3442511.

Bose, S. K., Satpathy, S., & Jepsen, O. (1993). Semiconducting CsSnBr3. Physical Review B, 47(8), 4276–4280. doi:10.1103/PhysRevB.47.4276.

Lefebvre, I., Lippens, P. E., Lannoo, M., & Allan, G. (1990). Band structure of CsSnBr3. Physical Review B, 42(14), 9174–9177. doi:10.1103/PhysRevB.42.9174.

Davlatshoevich, N. D., Ashur, K. M., Saidali, B. A., Kholmirzotagoykulovich, K., Lyubchyk, A., & Ibrahim, M. (2022). Investigation of structural and optoelectronic properties of N-doped hexagonal phases of TiO2 (TiO2-xNx) nanoparticles with DFT realization: Optimization of the band gap and optical properties for visible-light absorption and photovoltaic applications. Biointerface Research in Applied Chemistry, 12(3), 3836–3848. doi:10.33263/BRIAC123.38363848.

Doroshkevich, A. S., Nabiev, A. A., Shylo, A. V., Pawlukojć, A., Doroshkevich, V. S., Glazunova, V. A., … Bodnarchuk, V. I. (2019). Frequency modulation of the Raman spectrum at the interface DNA - ZrO2 nanoparticles. Egyptian Journal of Chemistry, 62(1), 13–15. doi:10.21608/ejchem.2019.12898.1806.

Nematov, D. D., Burhonzoda, A. S., Khusenov, M. A., Kholmurodov, K. T., & Yamamoto, T. (2021). First Principles Analysis of Crystal Structure, Electronic and Optical Properties of CsSnI3–xBrx Perovskite for Photoelectric Applications. Journal of Surface Investigation, 15(3), 532–536. doi:10.1134/S1027451021030149.

Nematov, D. D., Burhonzoda, A. S., Khusenov, M. A., Kholmurodov, K. T., Elhaes, H., & Ibrahim, M. A. (2019). The quantum-chemistry calculations of electronic structure of boron nitride nanocrystals with density functional theory realization. Egyptian Journal of Chemistry, 62, 21–27. doi:10.21608/EJCHEM.2019.12879.1805.

Nematov, D. D., Kholmurodov, K. T., Yuldasheva, D. А., Rakhmonov, K. R., & Khojakhonov, I. T. (2022). Ab-initio Study of Structural and Electronic Properties of Perovskite Nanocrystals of the CsSn[Br1−xIx]3 Family. HighTech and Innovation Journal, 3(2), 140–150. doi:10.28991/hij-2022-03-02-03.

Verma, A. S., Kumar, A., & Bhardwaj, S. R. (2008). Correlation between ionic charge and the lattice constant of cubic perovskite solids. Physica Status Solidi (B) Basic Research, 245(8), 1520–1526. doi:10.1002/pssb.200844072.

Blaha, P., Schwarz, K., Tran, F., Laskowski, R., Madsen, G. K. H., & Marks, L. D. (2020). WIEN2k: An APW+lo program for calculating the properties of solids. Journal of Chemical Physics, 152(7), 74101. doi:10.1063/1.5143061.

Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review, 136(3B), 864– 871. doi:10.1103/PhysRev.136.B864.

Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A), 1133– 1138. doi:10.1103/PhysRev.140.A1133.

Koller, D., Tran, F., & Blaha, P. (2011). Merits and limits of the modified Becke-Johnson exchange potential. Physical Review B - Condensed Matter and Materials Physics, 83(19). doi:10.1103/PhysRevB.83.195134.

Gajdoš, M., Hummer, K., Kresse, G., Furthmüller, J., & Bechstedt, F. (2006). Linear optical properties in the projector-augmented wave methodology. Physical Review B - Condensed Matter and Materials Physics, 73(4), 45112. doi:10.1103/PhysRevB.73.045112.

Afsari, M., Boochani, A., & Hantezadeh, M. (2016). Electronic, optical and elastic properties of cubic perovskite CsPbI3: Using first principles study. Optik, 127(23), 11433–11443. doi:10.1016/j.ijleo.2016.09.013.

Ghaithan, H. M., Alahmed, Z. A., Lyras, A., Qaid, S. M. H., & Aldwayyan, A. S. (2020). Computational Investigation of the Folded and Unfolded Band Structure and Structural and Optical Properties of CsPb(I1−xBrx)3 Perovskites. Crystals, 10(5), 342. doi:10.3390/cryst10050342.

Zafar, M., Kashif Masood, M., Rizwan, M., Zia, A., Ahmad, S., Akram, A., Bao, C. C., & Shakil, M. (2019). Theoretical study of structural, electronic, optical and elastic properties of AlxGa1-xP. Optik, 182, 1176–1185. doi:10.1016/j.ijleo.2018.12.165.

Zafar, M., Shakil, M., Ahmed, S., Raza-ur-Rehman Hashmi, M., Choudhary, M. A., & Naeem-ur-Rehman. (2017). Ab initio study of structural, electronic and elastic properties of CdSe1−xSx semiconductor. Solar Energy, 158, 63–70. doi:10.1016/j.solener.2017.09.034.

Feinberg, G., Sucher, J., & Au, C. K. (1989). The dispersion theory of dispersion forces. Physics Reports, 180(2), 83–157. doi:10.1016/0370-1573(89)90111-7.

Lin, J., Yu, M., Lin, C., & Liu, X. (2007). Multiform Oxide Optical Materials via the Versatile Pechini-Type Sol−Gel Process: Synthesis and Characteristics. The Journal of Physical Chemistry C, 111(16), 5835–5845. doi:10.1021/jp070062c.

Xin, H., Holewinski, A., Schweitzer, N., Nikolla, E., & Linic, S. (2012). Electronic Structure Engineering in Heterogeneous Catalysis: Identifying Novel Alloy Catalysts Based on Rapid Screening for Materials with Desired Electronic Properties. Topics in Catalysis, 55(5-6), 376–390. doi:10.1007/s11244-012-9794-2.


Full Text: PDF

DOI: 10.28991/HEF-2021-02-04-08

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Nematov Dilshod Davlatshoevich