A Collaborative Model for Integration of Artificial Intelligence in Primary Care
Abstract
Doi: 10.28991/HEF-2021-02-04-07
Full Text: PDF
Keywords
References
Kondro, W. (2004). Canadian report quantifies cost of medical errors. Lancet, 363(9426), 2059. doi:10.1016/s0140-6736(04)16492-1.
OECD (2020). The Economics of Patient Safety: From analysis to action. Organisation for Economic Co-operation and Development Report, Paris, France. Available online: https://www.oecd.org/health/health-systems/Economics-of-Patient-Safety-October-2020.pdf (accessed on May 2021).
WHO (2016). Technical Series on Safer Primary Care: Diagnostic errors. World Health Organization. Available online: https://www.who.int/publications/i/item/9789241511636 (accessed on May 2021).
Sidorov, P. I., Solov’ev, A. G., & Novikova, I. A. (2008). The burnout syndrome in communicative professional workers. Gigiena i Sanitariia, 3(3), 29–33.
Liu, X., Faes, L., Kale, A. U., Wagner, S. K., Fu, D. J., Bruynseels, A., Mahendiran, T., Moraes, G., Shamdas, M., Kern, C., Ledsam, J. R., Schmid, M. K., Balaskas, K., Topol, E. J., Bachmann, L. M., Keane, P. A., & Denniston, A. K. (2019). A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. The Lancet Digital Health, 1(6), e271–e297. doi:10.1016/S2589-7500(19)30123-2.
The Guardian (2019). AI equal with human experts in medical diagnosis, study finds | Artificial intelligence (AI). The Guardian News & Media, London, United Kingdom. Available online: https://www.theguardian.com/technology/2019/sep/24/ai-equal-with-human-experts-in-medical-diagnosis-study-finds (accessed on April 2021).
Roberts, J. (2016). Thinking machines: The search for artificial intelligence. Distillations, Science History Institute. Available online: https://www.sciencehistory.org/distillations/thinking-machines-the-search-for-artificial-intelligence (accessed on May 2021).
Kostopoulou, O., Delaney, B. C., & Munro, C. W. (2008). Diagnostic difficulty and error in primary care--a systematic review. Family Practice, 25(6), 400–413. doi:10.1093/fampra/cmn071.
Jain, A., Way, D., Gupta, V., Gao, Y., de Oliveira Marinho, G., Hartford, J., … Liu, Y. (2021). Development and Assessment of an Artificial Intelligence–Based Tool for Skin Condition Diagnosis by Primary Care Physicians and Nurse Practitioners in Teledermatology Practices. JAMA Network Open, 4(4), e217249. doi:10.1001/jamanetworkopen.2021.7249.
Miller, S., Gilbert, S., Virani, V., & Wicks, P. (2020). Patients’ Utilization and Perception of an Artificial Intelligence–Based Symptom Assessment and Advice Technology in a British Primary Care Waiting Room: Exploratory Pilot Study. JMIR Human Factors, 7(3), e19713. doi:10.2196/19713.
Balasubramaniam, V. (2021). Artificial Intelligence Algorithm with SVM Classification using Dermascopic Images for Melanoma Diagnosis. Journal of Artificial Intelligence and Capsule Networks, 3(1), 34–42. doi:10.36548/jaicn.2021.1.003.
Rogers, W. A., Draper, H., & Carter, S. M. (2021). Evaluation of artificial intelligence clinical applications: Detailed case analyses show value of healthcare ethics approach in identifying patient care issues. Bioethics, 35(7), 623–633. doi:10.1111/bioe.12885.
Graber, M. L. (2013). The incidence of diagnostic error in medicine. BMJ Quality & Safety, 22(Suppl 2), 21–27. doi:10.1136/bmjqs-2012-001615.
Tomayko, J. E. (2003). Behind Deep Blue: Building the Computer that Defeated the World Chess Champion (review). Princeton University Press: Technology and Culture, 44(3), 634–635. doi:10.1353/tech.2003.0140.
Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., … Hassabis, D. (2017). Mastering the game of Go without human knowledge. Nature, 550(7676), 354–359. doi:10.1038/nature24270.
Chandradevan, R., Aljudi, A. A., Drumheller, B. R., Kunananthaseelan, N., Amgad, M., Gutman, D. A., … Jaye, D. L. (2019). Machine-based detection and classification for bone marrow aspirate differential counts: initial development focusing on nonneoplastic cells. Laboratory Investigation, 100(1), 98–109. doi:10.1038/s41374-019-0325-7.
DOI: 10.28991/HEF-2021-02-04-07
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Serge Dolgikh