Hybrid Energy Piles as a Smart and Sustainable Foundation

Gianpiero Russo, Gabriella Marone, Luca Di Girolamo

Abstract


The disused factories’ areas represent a considerable part of the industrial archaeology of the city of Naples. In the last decades of the previous century, many of these factories were disused because of the ban on asbestos production by Italian law 257/1992. Of course, this was not the only problem that concurred to create a large number of disused industrial areas. Often the simple delocalization of manufactories in other countries contributed to this problem. The reuse of these areas requires polluted and contaminated land reclamation. The simple removal of the shallow soil layers is a widely used reclamation procedure. Furthermore, drilling operations either for piling or for tunneling may incur the same type of problem, taking into account that this movement can be very expensive depending on the total volume of soil to be removed and to be taken to disposal. In this study, a hybrid pile type is proposed as an environmentally friendly and cheap solution. Hybrid piles are installed by a combination of pushing and augering techniques. This installation method allows avoiding the removal and subsequent disposal of shallow contaminated soil. The mechanical behaviour of three hybrid piles equipped with strain gauges along the shaft is investigated via three loading tests. In the framework of the design of a new mall in a disused industrial area, the opportunity to provide a fully sustainable foundation solution by equipping the piles with heat exchanger pipes is also being investigated. Numerical simulations of the energy hybrid pile behaviour are presented, outlining further benefits of the new hybrid installation technique and comparing two different configurations of the heat exchanger pipes.

 

Doi: 10.28991/HEF-2021-02-03-010

Full Text: PDF


Keywords


Hybrid Energy Piles; Sustainable Foundations; Thermo-mechanical Behaviour; Geothermal Energy; Industrial Sites Contamination.

References


Zhang, H., Ma, D., Qiu, R., Tang, Y., & Du, C. (2017). Non-thermal plasma technology for organic contaminated soil remediation: A review. Chemical Engineering Journal, 313, 157–170. doi:10.1016/j.cej.2016.12.067.

Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182, 247–268. doi:10.1016/j.gexplo.2016.11.021.

Cioffi, R., Colangelo, F., Pertis, M. De, & Beneduce, A. (2013). La bonifica di siti contaminati da amianto: il caso ex Rhodiatoce.

Yao, Z., Li, J., Xie, H., & Yu, C. (2012). Review on Remediation Technologies of Soil Contaminated by Heavy Metals. Procedia Environmental Sciences, 16, 722–729. doi:10.1016/j.proenv.2012.10.099.

Peng, C., Chen, W., Liao, X., Wang, M., Ouyang, Z., Jiao, W., & Bai, Y. (2011). Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk. Environmental Pollution, 159(3), 802–808. doi:10.1016/j.envpol.2010.11.003.

Brandl, H. (2006). Energy foundations and other thermo-active ground structures. Geotechnique, 56(2), 81–122. doi:10.1680/geot.2006.56.2.81.

Gibbs, H. J., & Holtz, W. G. (1957). Research on determining density of sands by Spoon Penetration Standart. 4th Int. Conf. Soil Mech. Found. Eng., London, 1, 35–39.

Kulhawy, F. H., & Mayne, P. W. (1990). Manual on estimating soil properties for foundation design (No. EPRI-EL-6800). Electric Power Research Inst., Palo Alto, CA (USA); Cornell Univ., Ithaca, NY (USA). Geotechnical Engineering Group.

API, (1987). Recommended practice for planning, designing, and constructing fixed offshore platforms. API RP2A, 17th edition. American Petroleum Institute, Washington, DC.

Schmertmann, J. H. (1979). Statics of SPT. Journal of the Geotechnical Engineering Division, 105(5), 655–670. doi:10.1061/ajgeb6.0000801.

Beer, D. (1965). Bearing capacity and settlement of shallow foundation on sand. In Proc. Symp. Bearing capacity and settlement of foundations (pp. 15-33).

Russo, G. (2012). Experimental investigations and analysis on different pile load testing procedures. Acta Geotechnica, 8(1), 17–31. doi:10.1007/s11440-012-0177-4.

Russo, G. (2004). Full-scale load tests on instrumented micropiles. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 157(3), 127–135. doi:10.1680/geng.2004.157.3.127.

Bourne-Webb, P., Burlon, S., Javed, S., Kürten, S., & Loveridge, F. (2016). Analysis and design methods for energy geostructures. Renewable and Sustainable Energy Reviews, 65, 402–419. doi:10.1016/j.rser.2016.06.046.

Di Donna, A., & Laloui, L. (2015). Response of soil subjected to thermal cyclic loading: Experimental and constitutive study. Engineering Geology, 190, 65–76. doi:10.1016/j.enggeo.2015.03.003.

Laloui, L., Nuth, M., & Vulliet, L. (2006). Experimental and numerical investigations of the behaviour of a heat exchanger pile. International Journal for Numerical and Analytical Methods in Geomechanics, 30(8), 763–781. doi:10.1002/nag.499.

Rammal, D., Mroueh, H., & Burlon, S. (2018). Impact of thermal solicitations on the design of energy piles. Renewable and Sustainable Energy Reviews, 92, 111–120. doi:10.1016/j.rser.2018.04.049.

Saggu, R., & Chakraborty, T. (2015). Thermal analysis of energy piles in sand. Geomechanics and Geoengineering, 10(1), 10–29. doi:10.1080/17486025.2014.923586.

Sutman, M., Speranza, G., Ferrari, A., Larrey-Lassalle, P., & Laloui, L. (2020). Long-term performance and life cycle assessment of energy piles in three different climatic conditions. Renewable Energy, 146, 1177–1191. doi:10.1016/j.renene.2019.07.035.

Yang, W., Zhang, L., Zhang, H., Wang, F., & Li, X. (2020). Numerical investigations of the effects of different factors on the displacement of energy pile under the thermo-mechanical loads. Case Studies in Thermal Engineering, 21, 100711. doi:10.1016/j.csite.2020.100711.

Rotta Loria, A. F., Donna, A. Di, & Laloui, L. (2015). Numerical Study on the Suitability of Centrifuge Testing for Capturing the Thermal-Induced Mechanical Behavior of Energy Piles. Journal of Geotechnical and Geoenvironmental Engineering, 141(10), 04015042. doi:10.1061/(asce)gt.1943-5606.0001318.

Maiorano, R. M. S., Marone, G., Russo, G., & Di Girolamo, L. (2019). Experimental behavior and numerical analysis of energy piles. 17th European Conference on Soil Mechanics and Geotechnical Engineering, ECSMGE 2019 - Proceedings, 2019-September. doi:10.32075/17ECSMGE-2019-0819.

Russo, G., Maiorano, R. M. S., & Marone, G. (2019). Analysis of thermo-mechanical behaviour of energy piles. Geotechnical Engineering, 50(3), 110–117.

Russo, G., Marone, G., Di Girolamo, L., & Pirone, M. (2020). Numerical Prediction of Thermo-Mechanical Behavior of Energy Pile in Pyroclastic Soil. Sustainable Civil Infrastructures, 89–107. doi:10.1007/978-3-030-34193-0_7.

DesignBuilder (2021). Help - Internal Mass. Available online: http://designbuilder.co.uk/helpv7.0/#Internal_Mass.h tm?Highlight= zonecapacitance multiplier (Accessed on March 2021).

Morrone, B., Coppola, G., & Raucci, V. (2014). Energy and economic savings using geothermal heat pumps in different climates. Energy Conversion and Management, 88, 189–198. doi:10.1016/j.enconman.2014.08.007.

A Bolton, M. D. (1986). The strength and dilatancy of sands. Géotechnique, 36(1), 65–78. doi:10.1680/geot.1986.36.1.65.

Brinkgreve, R. B. J., Engin, E., & Engin, H. K. (2010). Validation of empirical formulas to derive model parameters for sands. Numerical Methods in Geotechnical Engineering - Proceedings of the 7th European Conference on Numerical Methods in Geotechnical Engineering, 137–142. doi:10.1201/b10551-27.

Colombo, G. (2010). Il congelamento artificiale del terreno negli scavi della metropolitana di Napoli : valutazioni teoriche e risultati sperimentali. In Rivista italiana di geotecnica, Vol. 4, pp. 42–62.

McCombie, M. L., Tarnawski, V. R., Bovesecchi, G., Coppa, P., & Leong, W. H. (2017). Thermal Conductivity of Pyroclastic Soil (Pozzolana) from the Environs of Rome. International Journal of Thermophysics, 38(2). doi:10.1007/s10765-016-2161-y.

Fadejev, J., Simson, R., Kurnitski, J., & Haghighat, F. (2017). A review on energy piles design, sizing and modelling. Energy, 122, 390–407. doi:10.1016/j.energy.2017.01.097.


Full Text: PDF

DOI: 10.28991/HEF-2021-02-03-010

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Gabriella Marone