Study of Regions of Homozygosity (ROH) Patterns to Evaluate the Use of Dogs’ Genome in Human Drug Development
Abstract
Doi: 10.28991/HEF-SP2022-01-02
Full Text: PDF
Keywords
References
Bailey, J., Thew, M., & Balls, M. (2014). An analysis of the use of animal models in predicting human toxicology and drug safety. ATLA Alternatives to Laboratory Animals, 42(3), 181–199. doi:10.1177/026119291404200306.
Sams, A. J., & Boyko, A. R. (2019). Fine-scale resolution of runs of homozygosity reveal patterns of inbreeding and substantial overlap with recessive disease genotypes in domestic dogs. G3: Genes, Genomes, Genetics, 9(1), 117–123. doi:10.1534/g3.118.200836.
Szpiech, Z. A., Xu, J., Pemberton, T. J., Peng, W., Zöllner, S., Rosenberg, N. A., & Li, J. Z. (2013). Long runs of homozygosity are enriched for deleterious variation. American Journal of Human Genetics, 93(1), 90–102. doi:10.1016/j.ajhg.2013.05.003.
Dyer, W. T. T. (1877). The Effects of Cross and Self-Fertilisation in the Vegetable Kingdom. Nature, 15(381), 329–332. doi:10.1038/015329a0.
Berra, T. M., Alvarez, G., & Ceballos, F. C. (2010). Was the darwin/wedgwood dynasty adversely affected by consanguinity? BioScience, 60(5), 376–383. doi:10.1525/bio.2010.60.5.7.
Garrod, A. E. (1902). The Incidence of Alkaptonuria : a Study in Chemical Individuality. The Lancet 160(4137), 1616–1620. doi:10.1016/S0140-6736(01)41972-6.
Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M., & Wilson, J. F. (2018). Runs of homozygosity: Windows into population history and trait architecture. Nature Reviews Genetics, 19(4), 220–234. doi:10.1038/nrg.2017.109.
Robinson, J. A., Räikkönen, J., Vucetich, L. M., Vucetich, J. A., Peterson, R. O., Lohmueller, K. E., & Wayne1, R. K. (2019). Genomic signatures of extensive inbreeding in Isle Royale wolves, a population on the threshold of extinction. Science Advances, 5(5), 757. doi:10.1126/sciadv.aau0757.
Clarke, L., Zheng-Bradley, X., Smith, R., Kulesha, E., Xiao, C., Toneva, I., Vaughan, B., Preuss, D., Leinonen, R., Shumway, M., Sherry, S., & Flicek, P. (2012). The 1000 Genomes Pproject: Data management and community access. Nature Methods, 9(5), 459–462. doi:10.1038/nmeth.1974.
Erikson, G. A., Bodian, D. L., Rueda, M., Molparia, B., Scott, E. R., Scott-Van Zeeland, A. A., … Torkamani, A. (2016). Whole-Genome Sequencing of a Healthy Aging Cohort. Cell, 165(4), 1002–1011. doi:10.1016/j.cell.2016.03.022.
Agarwala, R., Biesecker, L. G., & Schäffer, A. A. (2003). Anabaptist genealogy database. American Journal of Medical Genetics - Seminars in Medical Genetics, 121 C(1), 32–37. doi:10.1002/ajmg.c.20004.
Wang, J.-F., & Chou, K.-C. (2010). Molecular Modeling of Cytochrome P450 and Drug Metabolism. Current Drug Metabolism, 11(4), 342–346. doi:10.2174/138920010791514180.
Wang, K., Li, M., & Hakonarson, H. (2010). ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 38(16), 164– 164. doi:10.1093/nar/gkq603.
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., … Sham, P. C. (2007). PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human Genetics, 81(3), 559–575. doi:10.1086/519795.
Smedley, D., Haider, S., Durinck, S., Pandini, L., Provero, P., Allen, J., … Barbiera, G. (2015). The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Research, 43(W1), W589–W598. doi:10.1093/nar/gkv350.
Sund, K. L., Zimmerman, S. L., Thomas, C., Mitchell, A. L., Prada, C. E., Grote, L., Bao, L., Martin, L. J., & Smolarek, T. A. (2013). Regions of homozygosity identified by SNP microarray analysis aid in the diagnosis of autosomal recessive disease and incidentally detect parental blood relationships. Genetics in Medicine, 15(1), 70–78. doi:10.1038/gim.2012.94.
Pembroke, W. G., Babbs, A., Davies, K. E., Ponting, C. P., & Oliver, P. L. (2015). Temporal transcriptomics suggest that twin-peaking genes reset the clock. ELife, 4(NOVEMBER2015), 1–15. doi:10.7554/eLife.10518.001.
Pemberton, T. J., Absher, D., Feldman, M. W., Myers, R. M., Rosenberg, N. A., & Li, J. Z. (2012). Genomic patterns of homozygosity in worldwide human populations. American Journal of Human Genetics, 91(2), 275–292. doi:10.1016/j.ajhg.2012.06.014.
Škarić-Jurić, T., Tomas, Ž., Petranović, M. Z., Božina, N., Narančić, N. S., Janićijević, B., & Salihović, M. P. (2018). Characterization of ADME genes variation in Roma and 20 populations worldwide. PLoS ONE, 13(11), 207671. doi:10.1371/journal.pone.0207671.
Gaedigk, A., Whirl-Carrillo, M., Pratt, V. M., Miller, N. A., & Klein, T. E. (2020). PharmVar and the Landscape of Pharmacogenetic Resources. Clinical Pharmacology and Therapeutics, 107(1), 43–46. doi:10.1002/cpt.1654.
Van der Lee, M., Allard, W. G., Vossen, R. H. A. M., Baak-Pablo, R. F., Menafra, R., Deiman, B. A. L. M., … Anvar, S. Y. (2021). Toward predicting CYP2D6-mediated variable drug response from CYP2D6 gene sequencing data. Science Translational Medicine, 13(603). doi:10.1126/scitranslmed.abf3637.
Taylor, C., Crosby, I., Yip, V., Maguire, P., Pirmohamed, M., & Turner, R. M. (2020). A Review of the Important Role of CYP2D6 in Pharmacogenomics. Genes, 11(11), 1295. doi:10.3390/genes11111295.
Petrović, J., Pešić, V., & Lauschke, V. M. (2019). Frequencies of clinically important CYP2C19 and CYP2D6 alleles are graded across Europe. European Journal of Human Genetics, 28(1), 88–94. doi:10.1038/s41431-019-0480-8.
DOI: 10.28991/HEF-SP2022-01-02
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Sandra Paulina Smieszek