Analysis of the Generated Output Energy by Different Types of Wind Turbines

Fouad Alhajj Hassan, Malek Mahmoud, Omar A. M. Almohammed

Abstract


This study intends to analyse the generated individual output energy by different types of wind turbines. Focusing on estimating the total energy output generated by a wind farm utilizing three distinct wind turbines, Siemens Gamesa SG 3.4-132, Vesatas HTq V126, and Lagerwey L100, with rated powers of 3.465 MW, 3.45 MW, and 2.5 MW respectively. Sixty turbines of each type will be installed at the elevations of 97 m, 87 m, and 99 m consecutively. For the purpose of the study, the Sorochi Gory region was chosen as an eligible location for the farm due to its physiographic location and desirable forestry. A virtual experiment will be conducted by testing different possible wind turbine configurations and calculating their gross energy output, considering the output wind speed is in the ideal case, while the output energy includes the wake effect, using WindFarmer analyst software. Then, the results will be presented, including the optimal wind turbine configuration for the wind farm, in terms of efficiency, stability, and economy.

 

Doi: 10.28991/HEF-2020-01-04-03

Full Text: PDF


Keywords


Wind Turbines; Wind Farm; Renewable Energy; Lagerwey.

References


González, J. S., Rodríguez, Á. G. G., Mora, J. C., Burgos Payán, M., & Santos, J. R. (2011). Overall design optimization of wind farms. Renewable Energy, 36(7), 1973–1982. doi:10.1016/j.renene.2010.10.034.

Zolotov, I. I., & Shevcov, A. A. (2019). Influence of Electricity Consumers on the Autonomous Power Supply Systems Voltage Form. Proceedings of the Higher Educational Institutions. Energy Sector Problems, 21(1–2), 131–140. doi:10.30724/1998-9903-2019-21-1-2-131-140.

Ashford, N. A. (2002). Reflections on the first decade of the Journal of Cleaner Production. Journal of Cleaner Production, 10(2), 101–102. doi:10.1016/S0959-6526(01)00059-2.

Sedaghat, A., Mostafaeipour, A., Rezaei, M., Jahangiri, M., & Mehrabi, A. (2020). A new semi-empirical wind turbine capacity factor for maximizing annual electricity and hydrogen production. International Journal of Hydrogen Energy, 45(32), 15888–15903. doi:10.1016/j.ijhydene.2020.04.028.

Zaidullin, R. R., Nikitina, K. V., Lelickiy, M. V., & Pastukhov, V. V. (2021). Adygea Wind Power Plant: Research, Design, and Field Supervision. In Power Technology and Engineering (Vol. 54, Issue 5). Springer. doi:10.1007/s10749-020-01271-2.

Amano, R. S. (2017). Review of Wind Turbine Research in 21st Century. Journal of Energy Resources Technology, Transactions of the ASME, 139(5), 0508011–0508018. doi:10.1115/1.4037757.

Gasparis, G., Lio, W. H., & Meng, F. (2020). Surrogate models for wind turbine electrical power and fatigue loads in wind farm. In Energies 13(23). doi:10.3390/en13236360.

Ghaisas, N. N., Ghate, A. A., & Lele, S. S. (2020). Effect of tip spacing, thrust coefficient and turbine spacing in multi-rotor wind turbines and farms. Wind Energy Science, 5(1), 51–72. doi:10.5194/wes-5-51-2020.

Moghadam, S. M. M., Alibeiki, E., & Khosravi, A. (2019). Modelling and control of 6mg siemens wind turbine blades angle and rotor speed. International Journal on Electrical Engineering and Informatics, 11(1), 80–100. doi:10.15676/ijeei.2019.11.1.5.

Al Garni, H., Kassem, A., Awasthi, A., Komljenovic, D., & Al-Haddad, K. (2016). A multicriteria decision making approach for evaluating renewable power generation sources in Saudi Arabia. Sustainable Energy Technologies and Assessments, 16, 137–150. doi:10.1016/j.seta.2016.05.006.

Arias-Rosales, A., & Osorio-Gómez, G. (2018). Wind turbine selection method based on the statistical analysis of nominal specifications for estimating the cost of energy. Applied Energy, 228, 980–998. doi:10.1016/j.apenergy.2018.06.103.

Hassan, F. A. (2020). Multi-criteria Approach and Wind Farm Site Selection Analysis for Improving Power Efficiency. Journal of Human, Earth and Future, 1(2), 60–70. doi:10.28991/HEF-2020-01-02-02.

Almohammed, O. A. M., Philippova, F. M., Hassan, F. I. A., Timerbaev, N. F., & Fomin, A. A. (2021). Practical study on heat pump enhancement by the solar energy. E3S Web of Conferences, 288, 01069. doi:10.1051/e3sconf/202128801069.

Qian, G.-W., & Ishihara, T. (2018). A New Analytical Wake Model for Yawed Wind Turbines. Energies, 11(3), 665. doi:10.3390/en11030665.

Gemechu, B. D., & Sharapov, V. I. (2019). Energy efficiency assessment of hybrid solar-geothermal power plant. Power Engineering: Research, Equipment, Technology, 21(4), 3–11. doi:10.30724/1998-9903-2019-21-4-3-11.

Vorkunov, O. V., Aii., & Gainutdinova, A. M. (2021). Optimal orientation of solar photoelectric modules in Kazan. Journal of Energy Problems, 11(4), 12-27.

Abass, A., Pavlyuchenko, D. & VLess. (2021). Mathematical model of optimal placement of a hybrid power plant with a combined cycle 23(1), 128-137.

Hassan, F. A., & Sidorov, A. (2019). Study of power system stability: Matlab program processing data from Zahrani power plant (Beirut, Lebanon). E3S Web of Conferences, 124. doi:10.1051/e3sconf/201912405011.


Full Text: PDF

DOI: 10.28991/HEF-2020-01-04-03

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Fouad Alhajj Hassan, Malek Mahmoud, Omar Abdulhadi Mustafa Almohammed