Dispersion of Rayleigh Surface Waves and Electrical Resistivities Utilized to Invert Near Surface Structural Heterogeneities

Özcan Çakır, Nart Coşkun

Abstract


The single-station Rayleigh surface wave group velocities and electrical resistivities are two data sets that we cooperatively employ to image the near surface (< 40-m) anomaly structures. We numerically simulate the corresponding field measurements where the anomaly structures are assumed to have two-dimensional (2D) variations. The surface waves are represented by fundamental mode dispersion curves, and the electrical resistivities are assumed to be measured by using direct currents. We consider two types of anomaly structures, i.e., cavity and ore body. These two heterogeneities are easily distinguished from the surrounding geomaterial by their distinct physical properties. The cavity is characterized by low seismic velocity and high electrical resistivity, while the ore body is characterized by high seismic velocity and low electrical resistivity. The Rayleigh surface wave data is assumed to be collected throughout the classical common-shot gather. Multiple electrodes, multiple core cables, and multiple arrays are assumed to be used in the electrical survey. Both surface wave group velocities and electrical resistivities are shown to properly invert the anomalous structures in the subsurface. The surface wave group velocities have good horizontal resolution, while the corresponding vertical resolution is somewhat lower. The electrical resistivities have good resolution for shallow structures, but the resolution becomes somewhat reduced with increasing depth.

 

Doi: 10.28991/HEF-2022-03-01-01

Full Text: PDF


Keywords


Electrical Resistivity; Cavity; Group Velocity; Ore Body; Rayleigh Surface Waves.

References


Çakır, Ö. (2020). Transverse Isotropic Crust Structure Beneath the Northwest and Central North Anatolia Revealed By Seismic Surface Waves Propagation. Malaysian Journal of Geosciences, 5(2), 41–50. doi:10.26480/mjg.02.2021.41.50.

Calderón-Macías, C., & Luke, B. (2007). Improved parameterization to invert Rayleigh-wave data for shallow profiles containing stiff inclusions. Geophysics, 72(1), 1– 10. doi:10.1190/1.2374854.

Pasquet, S., Bodet, L., Longuevergne, L., Dhemaied, A., Camerlynck, C., Rejiba, F., & Guérin, R. (2015). 2D characterization of near-surface VP/VS: Surface-wave dispersion inversion versus refraction tomography. Near Surface Geophysics, 13(4), 315–331. doi:10.3997/1873-0604.2015028.

Pasion, L. R., Billings, S. D., & Oldenburg, D. W. (2003). Joint and Cooperative Inversion of Magnetic and Time Domain Electromagnetic Data for the Characterization of UXO. Proceedings from SAGEEP 03, 1455–1468. doi:10.4133/1.2923153.

Piatti, C., Socco, L. V., Boiero, D., & Foti, S. (2013). Constrained 1D joint inversion of seismic surface waves and P-refraction traveltimes. Geophysical Prospecting, 61(SUPPL.1), 77–93. doi:10.1111/j.1365-2478.2012.01071.x.

Ronczka, M., Hellman, K., Günther, T., Wisén, R., & Dahlin, T. (2017). Electric resistivity and seismic refraction tomography: A challenging joint underwater survey at Äspö Hard Rock Laboratory. Solid Earth, 8(3), 671–682. doi:10.5194/se-8-671-2017.

Monteiro Santos, F. A., Sultan, S. A., Represas, P., & El Sorady, A. L. (2006). Joint inversion of gravity and geoelectrical data for groundwater and structural investigation: Application to the northwestern part of Sinai, Egypt. Geophysical Journal International, 165(3), 705–718. doi:10.1111/j.1365-246X.2006.02923.x.

Schwenk, J. T., Sloan, S. D., Ivanov, J., & Miller, R. D. (2016). Surface-wave methods for anomaly detection. Geophysics, 81(4), EN29–EN42. doi:10.1190/GEO2015-0356.1.

Zhang, Z. dong, Saygin, E., He, L., & Alkhalifah, T. (2021). Rayleigh Wave Dispersion Spectrum Inversion Across Scales. Surveys in Geophysics, 42(6), 1281–1303. doi:10.1007/s10712-021-09667-z.

Li, G. F., Zheng, H., Zhu, W. L., Wang, M. C., & Zhai, T. L. (2016). Tomographic inversion of near-surface Q factor by combining surface and cross-hole seismic surveys. Applied Geophysics, 13(1), 93–102. doi:10.1007/s11770-016-0544-2.

Çaklr, Ö. (2019). Love and Rayleigh waves inverted for vertical transverse isotropic crust structure beneath the Biga Peninsula and the surrounding area in NW Turkey. Geophysical Journal International, 216(3), 2081–2105. doi:10.1093/gji/ggy538.

Hosseini, K., Sigloch, K., Tsekhmistrenko, M., Zaheri, A., Nissen-Meyer, T., & Igel, H. (2020). Global mantle structure from multifrequency tomography using P, PP and P-diffracted waves. Geophysical Journal International, 220(1), 96–141. doi:10.1093/gji/ggz394.

Abdel Zaher, M., Saibi, H., Mansour, K., Khalil, A., & Soliman, M. (2018). Geothermal exploration using airborne gravity and magnetic data at Siwa Oasis, Western Desert, Egypt. Renewable and Sustainable Energy Reviews, 82, 3824–3832. doi:10.1016/j.rser.2017.10.088.

Çakır, Ö., & Coşkun, N. (2021). Theoretical Issues with Rayleigh Surface Waves and Geoelectrical Method Used for the Inversion of Near Surface Geophysical Structure. Journal of Human, Earth, and Future, 2(3), 183–199. doi:10.28991/hef-2021-02-03-01.

Arzate, J., Corbo-Camargo, F., Carrasco-Núñez, G., Hernández, J., & Yutsis, V. (2018). The Los Humeros (Mexico) geothermal field model deduced from new geophysical and geological data. Geothermics, 71, 200–211. doi:10.1016/j.geothermics.2017.09.009.

Horrocks, T., Holden, E. J., Wedge, D., & Wijns, C. (2021). 3-D geochemical interpolation guided by geophysical inversion models. Geoscience Frontiers, 12(3), 101089. doi:10.1016/j.gsf.2020.09.018.

Huang, T., Fu, X., Ge, L., Zou, F., Hao, X., Yang, R., Xiao, R., & Fan, J. (2020). The genesis of giant lithium pegmatite veins in Jiajika, Sichuan, China: Insights from geophysical, geochemical as well as structural geology approach. Ore Geology Reviews, 124, 103557. doi:10.1016/j.oregeorev.2020.103557.

Martinho, E., & Dionísio, A. (2014). Main geophysical techniques used for non-destructive evaluation in cultural built heritage: A review. Journal of Geophysics and Engineering, 11(5), 53001. doi:10.1088/1742-2132/11/5/053001.

Çakır, Ö., & Erduran, M. (2011). On the P and S Receiver Functions Used for Inverting the One-Dimensional Upper Mantle Shear-Wave Velocities. Surveys in Geophysics, 32(1), 71–98. doi:10.1007/s10712-010-9108-9.

Fishwick, S. (2010). Surface wave tomography: Imaging of the lithosphere-asthenosphere boundary beneath central and southern Africa? Lithos, 120(1–2), 63–73. doi:10.1016/j.lithos.2010.05.011.

Lu, Y., Stehly, L., & Paul, A. (2018). High-resolution surface wave tomography of the European crust and uppermost mantle from ambient seismic noise. Geophysical Journal International, 214(2), 1136–1150. doi:10.1093/gji/ggy188.

Pan, Y., Schaneng, S., Steinweg, T., & Bohlen, T. (2018). Estimating S-wave velocities from 3D 9-component shallow seismic data using local Rayleigh-wave dispersion curves – A field study. Journal of Applied Geophysics, 159, 532–539. doi:10.1016/j.jappgeo.2018.09.037.

D. W. Steeples. (2009). A review of shallow seismic methods. Annals of Geophysics, 43(6), 1021–1044. doi:10.4401/ag-3687.

Yuan, X., Kind, R., Li, X., & Wang, R. (2006). The S receiver functions: Synthetics and data example. Geophysical Journal International, 165(2), 555–564. doi:10.1111/j.1365-246X.2006.02885.x.

Dal Moro, G., & Pipan, M. (2007). Joint inversion of surface wave dispersion curves and reflection travel times via multi-objective evolutionary algorithms. Journal of Applied Geophysics, 61(1), 56–81. doi:10.1016/j.jappgeo.2006.04.001.

Vinnik, L. P., Erduran, M., Oreshin, S. I., Kosarev, G. L., Kutlu, Y. A., Çakir, Ö., & Kiselev, S. G. (2014). Joint inversion of P- and S-receiver functions and dispersion curves of Rayleigh waves: The results for the Central Anatolian Plateau. Izvestiya, Physics of the Solid Earth, 50(5), 622–631. doi:10.1134/S106935131404017X.

Chen, Y., & Niu, F. (2016). Joint inversion of receiver functions and surface waves with enhanced preconditioning on densely distributed CNDSN stations: Crustal and upper mantle structure beneath China. Journal of Geophysical Research: Solid Earth, 121(2), 743–766. doi:10.1002/2015JB012450.

Yin, X., Xu, H., Mi, B., Hao, X., Wang, P., & Zhang, K. (2020). Joint inversion of Rayleigh and Love wave dispersion curves for improving the accuracy of near-surface S-wave velocities. Journal of Applied Geophysics, 176, 103939. doi:10.1016/j.jappgeo.2019.103939.

Onyebueke, E. O., Manzi, M. S. D., & Durrheim, R. J. (2018). High-resolution shallow reflection seismic integrated with other geophysical methods for hydrogeological prospecting in the Nylsvley Nature Reserve, South Africa. Journal of Geophysics and Engineering, 15(6), 2658–2673. doi:10.1088/1742-2140/aadbe3.

Senkaya, M., Karsli, H., Socco, L. V., & Foti, S. (2020). Obtaining reliable S-wave velocity depth profile by joint inversion of geophysical data: the combination of active surface-wave, seismic refraction and electric sounding data. Near Surface Geophysics, 18(6), 659–682. doi:10.1002/nsg.12126.

Filina, I., Liu, M., & Beutel, E. (2020). Evidence of ridge propagation in the eastern Gulf of Mexico from integrated analysis of potential fields and seismic data. Tectonophysics, 775, 228307. doi:10.1016/j.tecto.2019.228307.

C.C. Uwaezuoke, K.S. Ishola, & E. A. Ayolabi. (2021). Electrical resistivity imaging and multichannel analysis of surface waves for mapping the subsurface of a Wetland Area of Lagos, Nigeria. NRIAG Journal of Astronomy and Geophysics, 10(1), 300–319. doi:10.1080/20909977.2021.1927427.

Martínez-Moreno, F. J., Galindo-Zaldívar, J., Pedrera, A., Teixido, T., Ruano, P., Peña, J. A., González-Castillo, L., Ruiz-Constán, A., López-Chicano, M., & Martín-Rosales, W. (2014). Integrated geophysical methods for studying the karst system of Gruta de las Maravillas (Aracena, Southwest Spain). Journal of Applied Geophysics, 107, 149–162. doi:10.1016/j.jappgeo.2014.05.021.

Moorkamp, M. (2017). Integrating Electromagnetic Data with Other Geophysical Observations for Enhanced Imaging of the Earth: A Tutorial and Review. Surveys in Geophysics, 38(5), 935–962. doi:10.1007/s10712-017-9413-7.

Parsekian, A. D., Singha, K., Minsley, B. J., Holbrook, W. S., & Slater, L. (2015). Multiscale geophysical imaging of the critical zone. Reviews of Geophysics, 53(1), 1–26. doi:10.1002/2014RG000465.

Levshin, A. L., Barmin, M. P., & Ritzwoller, M. H. (2018). Tutorial review of seismic surface waves’ phenomenology. Journal of Seismology, 22(2), 519–537. doi:10.1007/s10950-017-9716-7.

Luo, Y., Xia, J., Xu, Y., & Zeng, C. (2011). Analysis of group-velocity dispersion of high-frequency Rayleigh waves for near-surface applications. Journal of Applied Geophysics, 74(2–3), 157–165. doi:10.1016/j.jappgeo.2011.04.002.

Bharti, A. K., Prakash, A., Verma, A., & Singh, K. K. K. (2021). Assessment of hydrological condition in strata associated with old mine working during and post-monsoon using electrical resistivity tomography: a case study. Bulletin of Engineering Geology and the Environment, 80(6), 5159–5166. doi:10.1007/s10064-021-02208-3.

Coşkun, N., Çakır, Ö., Erduran, M., Kutlu, Y. A., & Yalçın, A. (2016). Preliminary investigation of underground settlements of Nevşehir Castle region using 2.5-D electrical resistivity tomography: Cappadocia, Turkey. Arabian Journal of Geosciences, 9(18), 717. doi:10.1007/s12517-016-2727-9.

Coşkun, N., Çakır, Ö., Erduran, M., Kutlu, Y. A., & Çetiner, Z. S. (2016). A potential landslide area investigated by 2.5D electrical resistivity tomography: case study from Çanakkale, Turkey. Arabian Journal of Geosciences, 9(1), 1–20. doi:10.1007/s12517-015-2026-x.

Das, P., Pal, S. K., Mohanty, P. R., Priyam, P., Bharti, A. K., & Kumar, R. (2017). Abandoned mine galleries detection using electrical resistivity tomography method over Jharia coal field, India. Journal of the Geological Society of India, 90(2), 169–174. doi:10.1007/s12594-017-0695-7.

Srivastava, S., Pal, S. K., & Kumar, R. (2020). A time-lapse study using self-potential and electrical resistivity tomography methods for mapping of old mine working across railway-tracks in a part of Raniganj coalfield, India. Environmental Earth Sciences, 79(13), 332. doi:10.1007/s12665-020-09067-3.

Coşkun, N. (1994). A comparison of configuration arrays for the resistivity and induced polarisation methods and a direct interpretation technique for vertical profiling field data, PhD Dissertation, University of York, York, United Kingdom.

Çakir, Ö. (2006). The multilevel fast multipole method for forward modelling the multiply scattered seismic surface waves. Geophysical Journal International, 167(2), 663–678. doi:10.1111/j.1365-246X.2006.02928.x.

Çakir, Ö. (2012). A multilevel fast multipole method for computing the propagation of multiply scattered 2.5-D teleseismic surface waves underneath a linear or quasi-linear seismic station array. International Journal of Physical Sciences, 7(42), 5687–5700. doi:10.5897/IJPS12.337.

Filippi, C., Leparoux, D., Grandjean, G., Bitri, A., & Côte, P. (2019). New robust observables on Rayleigh waves affected by an underground cavity: From numerical to experimental modelling. Geophysical Journal International, 218(3), 1903–1918. doi:10.1093/gji/ggz256.

Lu, L., Maupin, V., Zeng, R., & Ding, Z. (2008). Scattering of surface waves modelled by the integral equation method. Geophysical Journal International, 174(3), 857–872. doi:10.1111/j.1365-246X.2008.03787.x.

Nasseri-Moghaddam, A. (2006). Study of the effect of lateral inhomogeneities on the propagation of Rayleigh waves in an elastic medium, PhD Dissertation, University of Waterloo, Waterloo, Canada.

Shao, G., Tsoflias, G. P., & Li, C. (2016). Detection of near-surface cavities by generalized S-transform of Rayleigh waves. Journal of Applied Geophysics, 129, 53–65. doi:10.1016/j.jappgeo.2016.03.041.

Xia, J., Nyquist, J. E., Xu, Y., Roth, M. J. S., & Miller, R. D. (2007). Feasibility of detecting near-surface feature with Rayleigh-wave diffraction. Journal of Applied Geophysics, 62(3), 244–253. doi:10.1016/j.jappgeo.2006.12.002.

Xu, C.Q. (2010). Localization of Near-Surface Anomalies Using Seismic Rayleigh Waves, PhD Dissertation, Dalhousie University, Halifax, Canada.

Breithaupt, C. (2016). Cave detection using seismic methods at Madison Blue Spring State Park, Madison County, Florida, MSc Thesis, Michigan Technological University, Houghton, United States.

Rahnema, H., Mirassi, S., & Dal Moro, G. (2021). Cavity effect on Rayleigh wave dispersion and P-wave refraction. Earthquake Engineering and Engineering Vibration, 20(1), 79–88. doi:10.1007/s11803-021-2006-y.

Barone, I., Boaga, J., Carrera, A., Flores-Orozco, A., & Cassiani, G. (2021). Tackling Lateral Variability Using Surface Waves: A Tomography-Like Approach. Surveys in Geophysics, 42(2), 317–338. doi:10.1007/s10712-021-09631-x.

Herrmann, R.B. (2002). Computer programs in seismology, version 3.30. St. Louis University, Missouri, United States.

Blanchy, G., Saneiyan, S., Boyd, J., McLachlan, P., & Binley, A. (2020). ResIPy, an intuitive open source software for complex geoelectrical inversion/modeling. Computers and Geosciences, 137, 104423. doi:10.1016/j.cageo.2020.104423.

Aki, K., Richards, P.G., (1980). Quantitative Seismology: Theory and Methods, pp. 144–151 & 315–319, W. H. Freeman, San Francisco, CA, United States.

Dziewonski, A., Bloch, S., & Landisman, M. (1969). A technique for the analysis of transient seismic signals. Bulletin of the Seismological Society of America, 59(1), 427–444. doi:10.1785/bssa0590010427.

Cakir, O. (1989). High frequency Rayleigh and Love waves, MS Thesis, Texas Tech University, Lubbock Texas, United States.

Cakir, O. (1993). Propagation of high frequency P and S waves under oceanic structures, PhD Dissertation, Texas Tech University, Lubbock Texas, United States.

Ismet Kanli, A., Tildy, P., Prónay, Z., Pinar, A., & Hermann, L. (2006). Vs30 mapping and soil classification for seismic site effect evaluation in Dinar region, SW Turkey. Geophysical Journal International, 165(1), 223–235. doi:10.1111/j.1365-246X.2006.02882.x.

Keceli, A. (2012). Soil parameters which can be determined with seismic velocities. Jeofizik 16: 17–29.

Milsom, J. (2003). Field Geophysics, the Geological Field Guide Series, Third Edition, Willey, England.

Palacky, G. J. (1988). 3. Resistivity Characteristics of Geologic Targets. Electromagnetic Methods in Applied Geophysics, 1, 52–129. doi:10.1190/1.9781560802631.ch3.


Full Text: PDF

DOI: 10.28991/HEF-2022-03-01-01

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Özcan Çakır