Production of Biodiesel from a Novel Combination of Raphia Africana Kernel Oil and Turtle Shell (Centrochelys Sulcata) Heterogenous Catalyst

Henry Oghenero Orugba, Kigho Moses Oghenejoboh, Ufuoma Modupe Oghenejoboh, Onogwarite E. Ohimor

Abstract


This work investigated the viability of a non-edible oil obtained from raphia africana in the production of biodiesel using a novel heterogeneous catalyst derived from turtle shells (Centrochelys sulcata). The study also proposed the use of acetone as a co-solvent to enhance the solubility of the reacting mixtures. The turtle shells were calcined at 900oC for 3 hours, impregnated with KOH to improve their activity, and then supported with activated carbon produced from cassava peels to increase their surface area. The influences of KOH concentration, catalyst loading, catalyst/carbon mix ratio, and the concentration of acetone/methanol on the yield of biodiesel were investigated. The results obtained revealed that a maximum biodiesel yield of 93% was obtained from the bio-oil at a KOH concentration of 30% (w/w), catalyst loading of 6.5%, a solvent/methanol ratio of 0.4 and a catalyst/carbon weight ratio of 1.25. The activated carbon supported turtle shell catalyst has been found to possess very high catalytic activity, converting bio-oil with a high saturated fatty acid content to biodiesel with excellent fuel properties and a low saturated fatty acid profile.

 

Doi: 10.28991/HEF-2021-02-03-07

Full Text: PDF


Keywords


Biodiesel; Turtle Shells; Raphia Africana; Calcination; Catalyst, Fatty Acid.

References


Alamu, O. J., Waheed, M. A., & Jekayinfa, S. O. (2007). Biodiesel production from Nigerian palm kernel oil: effect of KOH concentration on yield. Energy for Sustainable Development, 11(3), 77–82. doi:10.1016/S0973-0826(08)60579-7.

Boz, N., Degirmenbasi, N., & Kalyon, D. M. (2013). Transesterification of canola oil to biodiesel using calcium bentonite functionalized with K compounds. Applied Catalysis B: Environmental, 138–139, 236–242. doi:10.1016/j.apcatb.2013.02.043.

Wong, W. Y., Lim, S., Pang, Y. L., Shuit, S. H., Chen, W. H., & Lee, K. T. (2020). Synthesis of renewable heterogeneous acid catalyst from oil palm empty fruit bunch for glycerol-free biodiesel production. Science of the Total Environment, 727. doi:10.1016/j.scitotenv.2020.138534.

Orugba, H. O., Ogbeide, S. E., & Osagie, C. (2019). Emission Trading Scheme and the Effect of Carbon Fee on Petroleum Refineries. Asian Journal of Applied Sciences, 7(5), 537–545. doi:10.24203/ajas.v7i5.5947.

Ahmadi, M. H., Ghazvini, M., Alhuyi Nazari, M., Ahmadi, M. A., Pourfayaz, F., Lorenzini, G., & Ming, T. (2018). Renewable energy harvesting with the application of nanotechnology: A review. International Journal of Energy Research, 43(4), 1387–1410. doi:10.1002/er.4282.

Bouraiou, A., Necaibia, A., Boutasseta, N., Mekhilef, S., Dabou, R., Ziane, A., Sahouane, N., Attoui, I., Mostefaoui, M., & Touaba, O. (2020). Status of renewable energy potential and utilization in Algeria. Journal of Cleaner Production, 246, 119011. doi:10.1016/j.jclepro.2019.119011.

Singh, R., Bux, F., & Sharma, Y. C. (2020). Optimization of biodiesel synthesis from microalgal (Spirulina platensis) oil by using a novel heterogeneous catalyst, β-strontium silicate (β-Sr2SiO4). In Fuel (Vol. 280). doi:10.1016/j.fuel.2020.118312.

Faruque, M. O., Razzak, S. A., & Hossain, M. M. (2020). Application of heterogeneous catalysts for biodiesel production from microalgal oil—a review. Catalysts, 10(9), 1–25. doi:10.3390/catal10091025.

Panwar, N. L., Kaushik, S. C., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews, 15(3), 1513–1524. doi:10.1016/j.rser.2010.11.037.

Can, I. (2012). Experimental investigation effects of blend hazelnut oil on compression ignition engine performance characteristics and emission. Journal of Renewable and Sustainable Energy, 4(4), 42701. doi:10.1063/1.4737921.

Barua, P., Dutta, K., Basumatary, S., & Deka, D. C. (2014). Seed oils from non-conventional sources in north-east India: Potential feedstock for production of biodiesel. Natural Product Research, 28(8), 577–580. doi:10.1080/14786419.2014.881361.

Abdullah, S. H. Y. S., Hanapi, N. H. M., Azid, A., Umar, R., Juahir, H., Khatoon, H., & Endut, A. (2017). A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production. Renewable and Sustainable Energy Reviews, 70, 1040–1051. doi:10.1016/j.rser.2016.12.008.

Asri, N. P., Machmudah, S., Wahyudiono, Suprapto, Budikarjono, K., Roesyadi, A., & Goto, M. (2013). Palm oil transesterification in sub- and supercritical methanol with heterogeneous base catalyst. Chemical Engineering and Processing: Process Intensification, 72, 63–67. doi:10.1016/j.cep.2013.07.003.

Mat Yasin, M. H., Yusaf, T., Mamat, R., & Fitri Yusop, A. (2014). Characterization of a diesel engine operating with a small proportion of methanol as a fuel additive in biodiesel blend. Applied Energy, 114, 865–873. doi:10.1016/j.apenergy.2013.06.012.

Oghenejoboh, K. M., & Umukoro, P. O. (2011). Comparative analysis of fuel characteristics of bio-diesel produced from selected oil-bearing seeds in Nigeria. European Journal of Scientific Research, 58(2), 238–246.

Subramaniam, D., Murugesan, A., & Avinash, A. (2013). Performance and emission evaluation of biodiesel fueled diesel engine abetted with exhaust gas recirculation and Ni coated catalytic converter. Journal of Renewable and Sustainable Energy, 5(2), 23138. doi:10.1063/1.4802943.

Gumahin, A. C., Galamiton, J. M., Allerite, M. J., Valmorida, R. S., Laranang, J. R. L., Mabayo, V. I. F., Arazo, R. O., & Ido, A. L. (2019). Response surface optimization of biodiesel yield from pre-treated waste oil of rendered pork from a food processing industry. Bioresources and Bioprocessing, 6(1). doi:10.1186/s40643-019-0284-2.

Mansir, N., Teo, S. H., Rashid, U., Saiman, M. I., Tan, Y. P., Alsultan, G. A., & Taufiq-Yap, Y. H. (2018). Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review. Renewable and Sustainable Energy Reviews, 82, 3645–3655. doi:10.1016/j.rser.2017.10.098.

Mat Yasin, M. H., Yusaf, T., Mamat, R., & Fitri Yusop, A. (2014). Characterization of a diesel engine operating with a small proportion of methanol as a fuel additive in biodiesel blend. Applied Energy, 114, 865–873. doi:10.1016/j.apenergy.2013.06.012.

Xue, J., Grift, T. E., & Hansen, A. C. (2011). Effect of biodiesel on engine performances and emissions. Renewable and Sustainable Energy Reviews, 15(2), 1098–1116. doi:10.1016/j.rser.2010.11.016.

Rajagopal, K., Bindu, C., Prasad, R. B. N., & Ahmad, A. (2016). The effect of fatty acid profiles of biodiesel on key fuel properties of some biodiesels and blends. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 38(11), 1582–1590. doi:10.1080/15567036.2014.929758.

Selaimia, R., Beghiel, A., & Oumeddour, R. (2015). The Synthesis of Biodiesel from Vegetable Oil. Procedia - Social and Behavioral Sciences, 195, 1633–1638. doi:10.1016/j.sbspro.2015.06.221.

Akhihiero, E. T., Oghenejoboh, K. M., & Umukoro, P. O. (2013). Effects of Process Variables on Transesterification Reaction of Jatropha Curcas Seed Oil for the Production of Biodiesel. International Journal of Emerging Technology and Advanced Engineering, 3(6), 388–393.

Chen, Y. H., Huang, Y. H., Lin, R. H., & Shang, N. C. (2010). A continuous-flow biodiesel production process using a rotating packed bed. Bioresource Technology, 101(2), 668–673. doi:10.1016/j.biortech.2009.08.081.

Jayathilakan, K., Sultana, K., Radhakrishna, K., & Bawa, A. S. (2012). Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. Journal of Food Science and Technology, 49(3), 278–293. doi:10.1007/s13197-011-0290-7.

Baladincz, P., & Hancsók, J. (2015). Fuel from waste animal fats. Chemical Engineering Journal, 282, 152–160. doi:10.1016/j.cej.2015.04.003.

Elkady, M. F., Zaatout, A., & Balbaa, O. (2015). Production of Biodiesel from Waste Vegetable Oil via KM Micromixer. Journal of Chemistry, 2015. doi:10.1155/2015/630168.

Prueksakorn, K., & Gheewala, S. H. (2008). Full chain energy analysis of biodiesel from jatropha curcas L in Thailand. Environmental Science and Technology, 42(9), 3388–3393. doi:10.1021/es7022237.

Ito, T., Nakashimada, Y., Senba, K., Matsui, T., & Nishio, N. (2005). Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. Journal of Bioscience and Bioengineering, 100(3), 260–265. doi:10.1263/jbb.100.260.

Ejikeme, P. M., Anyaogu, I. D., Ejikeme, C. L., Nwafor, N. P., Egbuonu, C. A. C., Ukogu, K., & Ibemesi, J. A. (2010). Catalysis in biodiesel production by transesterification processes-an insight. E-Journal of Chemistry, 7(4), 1120–1132. doi:10.1155/2010/689051.

Nurfitri, I., Maniam, G. P., Hindryawati, N., Yusoff, M. M., & Ganesan, S. (2013). Potential of feedstock and catalysts from waste in biodiesel preparation: A review. Energy Conversion and Management, 74, 395–402. doi:10.1016/j.enconman.2013.04.042.

Hadiyanto, H., Afianti, A. H., Navi’A, U. I., Adetya, N. P., Widayat, W., & Sutanto, H. (2017). The development of heterogeneous catalyst C/CaO/NaOH from waste of green mussel shell (Perna varidis) for biodiesel synthesis. Journal of Environmental Chemical Engineering, 5(5), 4559–4563. doi:10.1016/j.jece.2017.08.049.

Guldhe, A., Moura, C. V. R., Singh, P., Rawat, I., Moura, E. M., Sharma, Y., & Bux, F. (2017). Conversion of microalgal lipids to biodiesel using chromium-aluminum mixed oxide as a heterogeneous solid acid catalyst. Renewable Energy, 105, 175–182. doi:10.1016/j.renene.2016.12.053.

Leung, D. Y. C., Wu, X., & Leung, M. K. H. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87(4), 1083–1095. doi:10.1016/j.apenergy.2009.10.006.

Hu, S., Wang, Y., & Han, H. (2011). Utilization of waste freshwater mussel shell as an economic catalyst for biodiesel production. Biomass and Bioenergy, 35(8), 3627–3635. doi:10.1016/j.biombioe.2011.05.009.

Birla, A., Singh, B., Upadhyay, S. N., & Sharma, Y. C. (2012). Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell. Bioresource Technology, 106, 95–100. doi:10.1016/j.biortech.2011.11.065.

Obadiah, A., Swaroopa, G. A., Kumar, S. V., Jeganathan, K. R., & Ramasubbu, A. (2012). Biodiesel production from Palm oil using calcined waste animal bone as catalyst. Bioresource Technology, 116, 512–516. doi:10.1016/j.biortech.2012.03.112.

De Sousa, F. P., Dos Reis, G. P., Cardoso, C. C., Mussel, W. N., & Pasa, V. M. D. (2016). Performance of CaO from different sources as a catalyst precursor in soybean oil transesterification: Kinetics and leaching evaluation. Journal of Environmental Chemical Engineering, 4(2), 1970–1977. doi:10.1016/j.jece.2016.03.009.

Putra, M. D., Irawan, C., Udiantoro, Ristianingsih, Y., & Nata, I. F. (2018). A cleaner process for biodiesel production from waste cooking oil using waste materials as a heterogeneous catalyst and its kinetic study. Journal of Cleaner Production, 195, 1249–1258. doi:10.1016/j.jclepro.2018.06.010.

Sulaiman, S., & Amin, M. H. M. (2016). Fish bone-catalyzed methanolysis of waste cooking oil. Bulletin of Chemical Reaction Engineering & Catalysis, 11(2), 245–249. doi:10.9767/bcrec.11.2.556.245-249.

Ali, C. H., Asif, A. H., Iqbal, T., Qureshi, A. S., Kazmi, M. A., Yasin, S., Danish, M., & Mu, B. Z. (2018). Improved transesterification of waste cooking oil into biodiesel using calcined goat bone as a catalyst. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 40(9), 1076–1083. doi:10.1080/15567036.2018.1469691.

Buasri, A., Worawanitchaphong, P., Trongyong, S., & Loryuenyong, V. (2014). Utilization of Scallop Waste Shell for Biodiesel Production from Palm Oil – Optimization Using Taguchi Method. APCBEE Procedia, 8, 216–221. doi:10.1016/j.apcbee.2014.03.030.

Singh, A. P., He, B. B., Thompson, J. C., & Van Gerpen, J. H. (2006). Process optimization of biodiesel production using alkaline catalysts. Applied Engineering in Agriculture, 22(4), 597–600. doi:10.13031/2013.21213.

Zhang, J., & Meng, Q. (2014). Preparation of KOH/CaO/C Supported Biodiesel Catalyst and Application Process. World Journal of Engineering and Technology, 02(03), 184–191. doi:10.4236/wjet.2014.23020.

Wembabazi, E., Mugisha, P. J., Ratibu, A., Wendiro, D., Kyambadde, J., & Vuzi, P. C. (2015). Spectroscopic analysis of heterogeneous biocatalysts for biodiesel production from expired sunflower cooking oil. Journal of Spectroscopy, 2015, 1 – 8. doi:10.1155/2015/714396.

Qi, G. J. (2011). Si-N-C Nanowires Derived by Polyhydridomethylsilazane Pyrolysis. Materials Sciences and Applications, 02(07), 936–939. doi:10.4236/msa.2011.27124.

Alhassan, Y., Kumar, N., Bugaje, I. M., Pali, H. S., & Kathkar, P. (2014). Co-solvents transesterification of cotton seed oil into biodiesel: Effects of reaction conditions on quality of fatty acids methyl esters. Energy Conversion and Management, 84, 640–648. doi:10.1016/j.enconman.2014.04.080.

Xie, J., Zheng, X., Dong, A., Xiao, Z., & Zhang, J. (2009). Biont shell catalyst for biodiesel production. Green Chemistry, 11(3), 355–36. doi:10.1039/b812139g.

Kostik, V., Memeti, S., & Bauer, B. (2013). Fatty acid composition of edible oils and fats. Journal of Hygienic Engineering and Design, 4, 112–116.

Bialek, A., Bialek, M., Jelinska, M., & Tokarz, A. (2017). La composición de ácidos grasos y las características de aceites comestibles innovadores en Polonia. CYTA - Journal of Food, 15(1), 1–8. doi:10.1080/19476337.2016.1190406.

Orsavova, J., Misurcova, L., Vavra Ambrozova, J., Vicha, R., & Mlcek, J. (2015). Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. International Journal of Molecular Sciences, 16(6), 12871–12890. doi:10.3390/ijms160612871.

Folayan, A. J., Anawe, P. A. L., Aladejare, A. E., & Ayeni, A. O. (2019). Experimental investigation of the effect of fatty acids configuration, chain length, branching and degree of unsaturation on biodiesel fuel properties obtained from lauric oils, high-oleic and high-linoleic vegetable oil biomass. Energy Reports, 5, 793–806. doi:10.1016/j.egyr.2019.06.013.

Bello, E. I., Adekanbi, I. T., & Akinbode, F. O. (2015). Production and Characterization of Coconut (Cocos Nucifera) Oil and Its Methyl Ester. European Journal of Engineering and Technology, 3(3), 25–35. www.idpublications.org

Verma, P., Sharma, M. P., & Dwivedi, G. (2016). Evaluation and enhancement of cold flow properties of palm oil and its biodiesel. Energy Reports, 2, 8–13. doi:10.1016/j.egyr.2015.12.001.

Iwanow, M., Gärtner, T., Sieber, V., & König, B. (2020). Activated carbon as catalyst support: Precursors, preparation, modification and characterization. Beilstein Journal of Organic Chemistry, 16, 1188–1202. doi:10.3762/bjoc.16.104.


Full Text: PDF

DOI: 10.28991/HEF-2021-02-03-07

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Kigho Moses Oghenejoboh