Machine Learning-Based Forecasting of Agricultural Commodity Prices Using Ensemble Models
Downloads
Downloads
[1] Sumaryanto, N. (2016). Analisis Volatilitas Harga Eceran Beberapa Komoditas Pangan Utama dengan Model ARCH/GARCH. Jurnal Agro Ekonomi, 27(2), 135. doi:10.21082/jae.v27n2.2009.135-163.
[2] Asmarantaka, R. W., & Oktaviani, R. (2009). Gejolak Harga Komoditas Pangan Internasional: Dampak Dan Implikasi Kebijakan Bagi Ketahanan Pangan Indonesia. Jurnal Agribisnis Dan Ekonomi Pertanian, 3(1), 36–49.
[3] I. Cahaya, (2023). Analisis Volatilitas Harga Pangan di Indonesia. Universitas Tidar, Jawa Tengah, Indonesia.
[4] Nonvide, G. M. A., & Akpa, A. F. (2023). Effects of climate change on food crop production in Benin. Climate Change Economics, 14(4), 34–46. doi:10.1142/S2010007823500203.
[5] Nunti, C., Somboon, K., & Intapan, C. (2020). The Impact of Climate Change on Agriculture Sector in ASEAN. Journal of Physics: Conference Series, 1651(1), 108–116. doi:10.1088/1742-6596/1651/1/012026.
[6] Breiman, L. (2001). Random forests. Random Forests, 1–122. Machine Learning, 45(1), 5–32. doi:10.1023/A:1010933404324.
[7] Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-August-2016, 785–794. doi:10.1145/2939672.2939785.
[8] Ziegel, E. R. (2003). The Elements of Statistical Learning. Technometrics. 45(3). doi:10.1198/tech.2003.s770.
[9] Riando, D., & Afiyati, A. (2024). Implementasi Algoritma XGBoost untuk Memprediksi Harga Jual Cabai Rawit di DKI Jakarta. Eduvest - Journal of Universal Studies, 4(9), 7877–7889. doi:10.59188/eduvest.v4i9.3784.
[10] Muchtar, I. R., & Afiyati, A. (2024). Comparison of Linear Regression and Random Forest Algorithms for Premium Rice Price Prediction (Case Study: West Java). Jurnal Indonesia Sosial Teknologi, 5(7), 3122–3132. doi:10.59141/jist.v5i7.1184.
[11] Rayadin, M. A., Musaruddin, M., Saputra, R. A., & Isnawaty, I. (2024). Implementasi Ensemble Learning Metode XGBoost dan Random Forest untuk Prediksi Waktu Penggantian Baterai Aki. BIOS: Jurnal Teknologi Informasi Dan Rekayasa Komputer, 5(2), 111–119. doi:10.37148/bios.v5i2.128.
[12] Chen, Z., Goh, H. S., Sin, K. L., Lim, K., Chung, N. K. H., & Liew, X. Y. (2021). Automated Agriculture Commodity Price Prediction System with Machine Learning Techniques. Advances in Science, Technology and Engineering Systems Journal, 6(4), 376–384. doi:10.25046/aj060442.
[13] Ismanto, E., & Novalia, M. (2021). Komparasi Kinerja Algoritma C4.5, Random Forest, dan Gradient Boosting untuk Klasifikasi Komoditas. Techno.Com, 20(3), 400–410. doi:10.33633/tc.v20i3.4576.
[14] Tran, N.-Q., Nguyen Ngoc, T., Tran, Q., Felipe, A., Huynh, T., Tang, A., & Nguyen, T. (2023). Predicting Agricultural Commodities Prices with Machine Learning: A Review of Current Research. School of Science, Engineering, and Technology, RMIT University Vietnam. 1(1): 1–7.
[15] Xiao, Y., & Jin, Z. (2021). The Forecast Research of Linear Regression Forecast Model in National Economy. OALib, 08(08), 1–17. doi:10.4236/oalib.1107797.
[16] Lubis, A. H., & Rizky Pulungan, M. (2024). Prediksi Harga Pangan di Tengah Isu Ketidakpastian Global Menggunakan Metode Regresi Linear dan Regresi Polinomial. Jurnal Fasilkom, 14(2), 404–409. doi:10.37859/jf.v14i2.6996.
[17] Putatunda, S., & Rama, K. (2019). A Modified Bayesian Optimization based Hyper-Parameter Tuning Approach for Extreme Gradient Boosting. 2019 15th International Conference on Information Processing: Internet of Things, ICINPRO 2019 - Proceedings, Bangalore, India (20-22 December 2019). doi:10.1109/ICInPro47689.2019.9092025.
[18] Salem, F. M. (2021). Gated RNN: The Gated Recurrent Unit (GRU) RNN. Recurrent Neural Networks, 85–100. doi:10.1007/978-3-030-89929-5_5.
[19] N. R. Timisela, (2020). The Analysis on Formation of Prices of Cayenne and Shallot Commodities at Retail Levels in Ambon City. Jurnal Budidaya Pertanian, 16(1), 31–41.
[20] Wang, Y., & Guo, Y. (2020). Forecasting method of stock market volatility in time series data based on mixed model of ARIMA and XGBoost. China Communications, 17(3), 205–221. doi:10.23919/JCC.2020.03.017.
[21] Gupta, I., Mittal, H., Rikhari, D., & Singh, A. K. (2022). MLRM: A Multiple Linear Regression based Model for Average Temperature Prediction of a Day. arXiv 2022, arXiv:2203.05835v1. Available online: https://arxiv.org/abs/2203.05835.
[22] Suryani, E., Hendrawan, R. A., Mulyono, T., & Dewi, L. P. (2014). System dynamics model to support rice production and distribution for food security. Jurnal Teknologi (Sciences and Engineering), 68(3), 45–51. doi:10.11113/jt.v68.2928.
[23] Liu, G. (2022). Research on Prediction and Analysis of Real Estate Market Based on the Multiple Linear Regression Model. Scientific Programming, 2022(2), 1–8. doi:10.1155/2022/5750354.
[24] Meenal, R., Michael, P. A., Pamela, D., & Rajasekaran, E. (2021). Weather prediction using random forest machine learning model. Indonesian Journal of Electrical Engineering and Computer Science, 22(2), 1208–1215. doi:10.11591/ijeecs.v22.i2.pp1208-1215.
[25] Saadah, S., & Salsabila, H. (2021). Prediksi Harga Bitcoin Menggunakan Metode Random Forest (Studi Kasus: Data Acak Pada Awal Masa Pandemic Covid-19). Jurnal Komputer Terapan, 7(1), 24–32. https://jurnal.pcr.ac.id/index.php/jkt/
[26] Sinambela, R. S., Ula, M., & Ulva, A. F. (2024). Prediksi Harga Emas Menggunakan Algoritma Regresi Linear Berganda Dan Support Vector Machine (SVM). Jurnal Sistem Dan Teknologi Informasi (JustIN), 12(2), 253. doi:10.26418/justin.v12i2.73386.
[27] Vuong, P. H., Dat, T. T., Mai, T. K., Uyen, P. H., & Bao, P. T. (2022). Stock-price forecasting based on XGBoost and LSTM. Computer Systems Science and Engineering, 40(1), 237–246. doi:10.32604/CSSE.2022.017685.
[28] Jabeur, S. Ben, Mefteh-Wali, S., & Viviani, J. L. (2024). Forecasting gold price with the XGBoost algorithm and SHAP interaction values. Annals of Operations Research, 334(1–3), 679–699. doi:10.1007/s10479-021-04187-w.
[29] Lemmens, A., & Croux, C. (2006). Bagging and boosting classification trees to predict churn. Journal of Marketing Research, 43(2), 276–286. doi:10.1509/jmkr.43.2.276.
[30] Barbur, V. A., Montgomery, D. C., & Peck, E. A. (1994). Introduction to Linear Regression Analysis. The Statistician. 43(2). John Wiley and Sons. doi:10.2307/2348362.
[31] Devianto, D., Wirawan, E., & Sukirno, S. (2024). Time series modeling using SARFIMAX on red chili prices in West Java. Indonesian Journal of Statistics and Its Applications, 8(1), 45–54.
[32] Rana, R., Kusumawardani, H., & Mulyani, A. (2024). ARIMA with weather-based features for red chili price forecasting in North Sumatra. Journal of Agroinformatics, 6(2), 93–100.
[33] Nugroho, M. A., & Ramadhan, D. (2023). Support vector regression for garlic price prediction in Java. International Conference on Data Science and Engineering (ICDSE, 27–32.
[34] Yuliana, L., & Prasetyo, B. (2023). Forecasting challenges in cayenne chili prices using traditional models. AgroTech Journal, 9(3), 12–19.
[35] Lundberg, S. M., & Lee, S.I. (2023). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30, 4765–4774.
- The authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.














