Integrating Satellite and UAV Imagery for Mangrove Aboveground Biomass and Carbon Stock Modeling
Downloads
Downloads
[1] Choudhary, B., Dhar, V., & Pawase, A. S. (2024). Blue carbon and the role of mangroves in carbon sequestration: Its mechanisms, estimation, human impacts and conservation strategies for economic incentives. Journal of Sea Research, 199, 102504. doi:10.1016/j.seares.2024.102504.
[2] Alongi, D. M. (2014). Carbon cycling and storage in mangrove forests. Annual Review of Marine Science, 6, 195–219. doi:10.1146/annurev-marine-010213-135020.
[3] Paramanik, S., Varghese, R., Behera, M. D., Barnwal, S., Behera, S. K., & Bhattyacharya, B. K. (2022). Photosynthetic variables estimation in a mangrove forest. Advances in Remote Sensing for Forest Monitoring, 126–149. doi:10.1002/9781119788157.ch6.
[4] Dutta Roy, A., Pitumpe Arachchige, P. S., Watt, M. S., Kale, A., Davies, M., Heng, J. E., Daneil, R., Galgamuwa, G. A. P., Moussa, L. G., Timsina, K., Ewane, E. B., Rogers, K., Hendy, I., Edwards-Jones, A., de-Miguel, S., Burt, J. A., Ali, T., Sidik, F., Abdullah, M., … Mohan, M. (2024). Remote sensing-based mangrove blue carbon assessment in the Asia-Pacific: A systematic review. Science of the Total Environment, 938, 173270. doi:10.1016/j.scitotenv.2024.173270.
[5] Mariano Neto, M., da Silva, J. B., & de Brito, H. C. (2024). Carbon stock estimation in a Brazilian mangrove using optical satellite data. Environmental Monitoring and Assessment, 196(1), 9. doi:10.1007/s10661-023-12151-3.
[6] Wang, D., Wan, B., Liu, J., Su, Y., Guo, Q., Qiu, P., & Wu, X. (2020). Estimating aboveground biomass of the mangrove forests on northeast Hainan Island in China using an upscaling method from field plots, UAV-LiDAR data and Sentinel-2 imagery. International Journal of Applied Earth Observation and Geoinformation, 85, 101986. doi:10.1016/j.jag.2019.101986.
[7] Nguyen, H. H., & Nguyen, T. T. H. (2021). Above-ground biomass estimation models of mangrove forests based on remote sensing and field-surveyed data: Implications for C-PFES implementation in Quang Ninh Province, Vietnam. Regional Studies in Marine Science, 48, 101985. doi:10.1016/j.rsma.2021.101985.
[8] Shangari, T. A., Shams, V., Azari, B., Shamshirdar, F., Baltes, J., & Sadeghnejad, S. (2017). Inter-humanoid robot interaction with emphasis on detection: a comparison study – ADDENDUM. The Knowledge Engineering Review, 32, 14. doi:10.1017/s0269888917000078.
[9] Tassi, A., & Vizzari, M. (2020). Object-oriented lulc classification in google earth engine combining snic, glcm, and machine learning algorithms. Remote Sensing, 12(22), 1–17. doi:10.3390/rs12223776.
[10] Rina, S., Ying, H., Shan, Y., Du, W., Liu, Y., Li, R., & Deng, D. (2023). Application of Machine Learning to Tree Species Classification Using Active and Passive Remote Sensing: A Case Study of the Duraer Forestry Zone. Remote Sensing, 15(10), 10. doi:10.3390/rs15102596.
[11] Farzanmanesh, R., Khoshelham, K., Volkova, L., Thomas, S., Ravelonjatovo, J., & Weston, C. J. (2024). Quantifying Mangrove aboveground biomass changes: Analysis of conservation impact in blue forests projects using sentinel-2 satellite imagery. Forest Ecology and Management, 561, 121920. doi:10.1016/j.foreco.2024.121920.
[12] Bajaj, M., Sasaki, N., Tsusaka, T. W., Venkatappa, M., Abe, I., & Shrestha, R. P. (2024). Assessing changes in mangrove forest cover and carbon stocks in the Lower Mekong Region using Google Earth Engine. Innovation and Green Development, 3(3), 100140. doi:10.1016/j.igd.2024.100140.
[13] Jachowski, N. R. A., Quak, M. S. Y., Friess, D. A., Duangnamon, D., Webb, E. L., & Ziegler, A. D. (2013). Mangrove biomass estimation in Southwest Thailand using machine learning. Applied Geography, 45, 311–321. doi:10.1016/j.apgeog.2013.09.024.
[14] Macintosh, D. J., & Ashton, E. C. (2023). Growth and carbon stocks in four mangrove species planted on a former charcoal concession site in Ranong, Thailand. Carbon Footprints, 2(3), 14. doi:10.20517/cf.2023.26.
[15] Sribut, S., Sunthornhao, P., & Diloksumpun, S. (2020). Valuation of Carbon Stock and Utilization of Non-timber Forest Products at the Sirinart Rajini Ecosystem Learning Center, Prachuap Khiri Khan Province. Thai Journal of Forestry, 39(2), 41–51.
[16] Srimoh R., Markphan W., (2024). Carbon Stocks in Mangrove Forests at Mangrove Forest Learning and Development Center 2, Nakhon Si Thammarat. Srinakharinwirot University Journal of Sciences and Technology, 16(1), 251943.
[17] Ngo, D. T., Nguyen, H. D., Nguyen, K. Q., Dang, C. H., Nguyen, H. H. V., Dang, N. T., & Pham, T. V. (2023). Application of multispectral UAV to estimate mangrove biomass in Vietnam: A case study in Dong Rui commune, Quang Ninh Province. One Ecosystem, 8, 103760. doi:10.3897/oneeco.8.e103760.
[18] Rijal, S. S., Pham, T. D., Noer’Aulia, S., Putera, M. I., & Saintilan, N. (2023). Mapping Mangrove Above-Ground Carbon Using Multi-Source Remote Sensing Data and Machine Learning Approach in Loh Buaya, Komodo National Park, Indonesia. Forests, 14(1), 94. doi:10.3390/f14010094.
[19] Jaroensutasinee, K., Jaroensutasinee, M., Detrattanawichai, S., & Sparrow, E. (2024). Factors Affecting Population Density and Mound Distribution of Mud Lobsters, Thalassina spp. Emerging Science Journal, 8(1), 169–179. doi:10.28991/ESJ-2024-08-01-012.
[20] World Bank. (2023). World Bank Climate Change Knowledge Portal: Bangladesh Overview. World Bank, Washington, D.C., United States. Available online: https://climateknowledgeportal.worldbank.org/ (accessed on May 2025).
[21] Kauffman, J. B., & Donato, D. C. (2012). Protocols for the measurement, monitoring, and reporting of structure, biomass, and carbon stocks in mangrove forests. Volume 86, CIFOR Bogor, Indonesia.
[22] Zarawie, T. T., Suratman, M. N., Jaafar, J., Hasmadi, I. M., & Abu, F. (2015). Field assessment of aboveground biomass (AGB) of mangrove stands in Merbok, Malaysia. Malaysian Applied Biology, 44(3), 81–86.
[23] DMCR. (2012). Mangrove plant species in Thailand. Department of Marine and Coastal Resources, Thailand. Available online: https://www.dmcr.go.th/detailLib/407 (accessed on May 2025).
[24] Komiyama, A., Poungparn, S., & Kato, S. (2005). Common allometric equations for estimating the tree weight of mangroves. Journal of Tropical Ecology, 21(4), 471–477. doi:10.1017/S0266467405002476.
[25] Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C., Chave, J., Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C., & Chave, J. (2009). Global Wood Density Database [Dataset]. Dryad Digital Repository. doi:10.5061/DRYAD.234/1.
[26] IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. IPCC — Intergovernmental Panel on Climate Change, Geneva, Switzerland. Available online: https://www.ipcc-nggip.iges.or.jp/ public/2006gl/vol4.html (accessed on May 2025).
[27] Vinod, K., Koya, A. A., Kunhi Koya, V. A., Silpa, P. G., Asokan, P. K., Zacharia, P. U., & Joshi, K. K. (2018). Biomass and carbon stocks in mangrove stands of Kadalundi Estuarine Wetland, south-west coast of India. Indian Journal of Fisheries, 65(2), 89–99. doi:10.21077/ijf.2018.65.2.72473-11.
[28] Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379–423. doi:10.1002/j.1538-7305.1948.tb01338.x.
[29] Simpson, E. H. (1949). Measurement of diversity. Nature, 163(4148), 688. doi:10.1038/163688a0.
[30] Nasiri, V., Darvishsefat, A. A., Arefi, H., Pierrot-Deseilligny, M., Namiranian, M., & Le Bris, A. (2021). Unmanned aerial vehicles (Uav)-based canopy height modeling under leaf-on and leaf-off conditions for determining tree height and crown diameter (case study: Hyrcanian mixed forest). Canadian Journal of Forest Research, 51(7), 962–971. doi:10.1139/cjfr-2020-0125.
[31] Zaitunah, A., Samsuri, Ahmad, A., & Safitri, R. (2018). Normalized difference vegetation index (NDVI) analysis for land cover types using Landsat 8 OLI in Besitang watershed, Indonesia. 126, 012112. doi:10.1088/1755 1315/126/1/012112.
[32] Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309. doi:10.1016/0034-4257(88)90106-X.
[33] Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS- MODIS. Remote Sensing of Environment, 58(3), 289–298. doi:10.1016/S0034-4257(96)00072-7.
[34] Bai, J., Meng, Y., Gou, R., Lyu, J., Dai, Z., Diao, X., Zhang, H., Luo, Y., Zhu, X., & Lin, G. (2021). Mangrove diversity enhances plant biomass production and carbon storage in Hainan Island, China. Functional Ecology, 35(3), 774–786. doi:10.1111/1365-2435.13753.
[35] Wang, G., Singh, M., Wang, J., Xiao, L., & Guan, D. (2021). Effects of marine pollution, climate, and tidal range on biomass and sediment organic carbon in Chinese mangrove forests. Catena, 202, 105270. doi:10.1016/j.catena.2021.105270.
[36] Nguyen, H. H., Vu, H. D., & Röder, A. (2021). Estimation of above-ground mangrove biomass using landsat-8 data-derived vegetation indices: A case study in Quang Ninh province, Vietnam. Forest and Society, 5(2), 506–525. doi:10.24259/fs.v5i2.13755.
[37] Nguyen, L. D., Nguyen, C. T., Le, H. S., & Tran, B. Q. (2019). Mangrove mapping and above-ground biomass change detection using satellite images in coastal areas of Thai Binh Province, Vietnam. Forest and Society, 3(2), 248–261. doi:10.24259/fs.v3i2.7326.
[38] Tian, Y., Zhang, Q., Huang, H., Huang, Y., Tao, J., Zhou, G., Zhang, Y., Yang, Y., & Lin, J. (2022). Aboveground biomass of typical invasive mangroves and its distribution patterns using UAV-LiDAR data in a subtropical estuary: Maoling River estuary, Guangxi, China. Ecological Indicators, 136, 108694. doi:10.1016/j.ecolind.2022.108694.
[39] Wirasatriya, A., Pribadi, R., Iryanthony, S. B., Maslukah, L., Sugianto, D. N., Helmi, M., Ananta, R. R., Adi, N. S., Kepel, T. L., Ati, R. N. A., Kusumaningtyas, M. A., Suwa, R., Ray, R., Nakamura, T., & Nadaoka, K. (2022). Mangrove Above-Ground Biomass and Carbon Stock in the Karimunjawa-Kemujan Islands Estimated from Unmanned Aerial Vehicle-Imagery. Sustainability (Switzerland), 14(2), 706. doi:10.3390/su14020706.
[40] ONEP. (2022). Thailand’s second updated nationally determined contribution. Natural Resources and Environmental Policy and Planning, Bangkok, Thailand. Available online: https://www.onep.go.th/en/ (accessed on May 2025).
[41] Thailand Greenhouse Gas Management Organization. (2025). Calculation for Carbon Sequestration in tree. GHG, Bangkok, Thailand. Available online: https://ghgreduction. tgo.or.th /th/tver-method/tver-tool/for-agr/item/3451-calculation-for-carbon-sequestration.html (accessed on May 2025).
[42] Thailand Greenhouse Gas Management Organization. (2016). What is LESS? GHG, Bangkok, Thailand. Available online: https://ghgreduction.tgo.or.th/th/about-less/about-less1.html (accessed on May 2025).
- The authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
