Optimizing Piezoelectric Energy Harvesters: A Study on Magnetic Nonlinearity
Downloads
This study aims to optimize the performance of piezoelectric energy harvesters (PEHs) by comparing linear and nonlinear configurations, with a focus on the role of magnetic nonlinearity. The objective is to address the limitations of conventional linear PEHs, which typically suffer from narrow bandwidth and limited power output, by exploring the integration of repulsive permanent magnets to induce nonlinear behavior. Analytical modelling combined with finite element analysis (FEA) was employed to evaluate voltage generation, power output, and resonant frequency in both models under consistent geometrical parameters. The linear configuration, featuring a single tip mass, achieved a peak output of 2.63 V and 0.29 mW at 111 Hz, aligning closely with validated analytical and FEA predictions. In contrast, the nonlinear model incorporating permanent magnets exhibited two distinct peaks, with a maximum output of 7.83 V and 1.92 mW at 74 Hz, results that were consistent with experimental validation despite minor frequency deviations. The findings highlight that nonlinear magnetic coupling significantly improves energy harvesting efficiency and broadens operational bandwidth compared to linear systems. The novelty of this study lies in its comprehensive comparison of magnet-integrated nonlinear PEHs against conventional designs, offering valuable insights for developing efficient, broadband, and sustainable energy harvesting technologies.
Downloads
[1] Perez-Alfaro, I., Gil-Hernandez, D., Hernando, E., Quero, F., & Bernal, C. (2022). Electrical Response Analysis of a Piezoelectric Energy Harvester Power Source Based on Electromechanical Parameters. Electronics (Switzerland), 11(22), 3697. doi:10.3390/electronics11223697.
[2] De Marqui, C. (2016). Piezoelectric energy harvesting. Dynamics of Smart Systems and Structures: Concepts and Applications. John Wiley & Sons. doi:10.1007/978-3-319-29982-2_11.
[3] Katzir, S. (2006). The discovery of the piezoelectric effect. In The beginnings of piezoelectricity: a study in mundane physics (pp. 15-64). Dordrecht: Springer Netherlands. doi:10.1007/978-1-4020-4670-4_2.
[4] Tian, W., Ling, Z., Yu, W., & Shi, J. (2018). A review of MEMS scale piezoelectric energy harvester. Applied Sciences (Switzerland), 8(4), 645. doi:10.3390/app8040645.
[5] Mo, X., Zhou, H., Li, W., Xu, Z., Duan, J., Huang, L., Hu, B., & Zhou, J. (2019). Piezoelectrets for wearable energy harvesters and sensors. Nano Energy, 65, 104033. doi:10.1016/j.nanoen.2019.104033.
[6] Ali, A., Shaukat, H., Bibi, S., Altabey, W. A., Noori, M., & Kouritem, S. A. (2023). Recent progress in energy harvesting systems for wearable technology. Energy Strategy Reviews, 49, 101124. doi:10.1016/j.esr.2023.101124.
[7] Priya, S., & Inman, D. J. (Eds.). (2009). Energy Harvesting Technologies. Springer US. doi:10.1007/978-0-387-76464-1.
[8] Petrini, F., & Gkoumas, K. (2018). Piezoelectric energy harvesting from vortex shedding and galloping induced vibrations inside HVAC ducts. Energy and Buildings, 158, 371–383. doi:10.1016/j.enbuild.2017.09.099.
[9] Rosso, M., Kohtanen, E., Corigliano, A., Ardito, R., & Erturk, A. (2023). Nonlinear phenomena in magnetic plucking of piezoelectric vibration energy harvesters. Sensors and Actuators A: Physical, 362, 114667. doi:10.1016/j.sna.2023.114667.
[10] Syed, F. H., Thong, L. W., & Chan, Y. K. (2024). Effect of Repulsive Permanent Magnets on a Cantilever Beam-Based Piezoelectric Energy Harvester. 2024 Multimedia University Engineering Conference, MECON 2024, 1–6. doi:10.1109/MECON62796.2024.10776350.
[11] Ghandchi Tehrani, M., & Elliott, S. J. (2014). Extending the dynamic range of an energy harvester using nonlinear damping. Journal of Sound and Vibration, 333(3), 623–629. doi:10.1016/j.jsv.2013.09.035.
[12] Li, M., Yu, D., Li, Y., Liu, X., & Dai, F. (2023). Integrated a nonlinear energy sink and a piezoelectric energy harvester using simply-supported bi-stable piezoelectric composite laminate. International Journal of Non-Linear Mechanics, 156, 104464. doi:10.1016/j.ijnonlinmec.2023.104464.
[13] Liu, Q., Liu, H., & Zhang, J. (2025). Optimization of nonlinear energy sink using Euler-buckled beams combined with piezoelectric energy harvester. Mechanical Systems and Signal Processing, 223, 111812. doi:10.1016/j.ymssp.2024.111812.
[14] Hou, C., Shan, X., Dang, S., Du, X., Sui, G., & Xie, T. (2025). A magnetically excited broadband rotary piezoelectric energy harvester with nonlinear energy sink: Theoretical investigations and experimental Verifications. Mechanical Systems and Signal Processing, 224, 112085. doi:10.1016/j.ymssp.2024.112085.
[15] Li, T., & Lee, P. S. (2022). Piezoelectric Energy Harvesting Technology: From Materials, Structures, to Applications. Small Structures, 3(3). Portico. doi:10.1002/sstr.202100128.
[16] Al Anazi, A. A., Candra, O., Chammam, A., Marhoon, H. A., Ali, I. R., Al-Kharsan, I. H., Alayi, R., Ebazadeh, Y., & Aladdin, M. (2023). Modeling and investigating electric power output maximization for piezoelectric energy harvester. AIP Advances, 13(5). doi:10.1063/5.0141848.
[17] Chen, K., & Liao, W.-H. (2023). A nonlinear piezoelectric energy harvester with multiple auxetic unit cells. In Active and Passive Smart Structures and Integrated Systems XVII (Vol. 12483, p. 57). SPIE. doi:10.1117/12.2658624.
[18] Guo, C., & Luo, A. C. (2022). Nonlinear piezoelectric energy harvesting induced through the Duffing oscillator. Chaos: An Interdisciplinary Journal of Nonlinear Science, 32(12). doi:10.1063/5.0123609
[19] Man, D., Xu, G., Xu, H., & Xu, D. (2022). Parametric Analysis of Nonlinear Bi-Stable Piezoelectric Energy Harvester Based on Multi-Scale Method. Power Engineering and Engineering Thermophysics, 1(1), 19–32. doi:10.56578/peet010104.
[20] Pertin, O., Guha, K., Jakšić, O., Jakšić, Z., & Iannacci, J. (2022). Investigation of Nonlinear Piezoelectric Energy Harvester for Low-Frequency and Wideband Applications. Micromachines, 13(9), 1399. doi:10.3390/mi13091399.
[21] Ding, J., Deng, A., Zeng, Z., & Su, H. (2022). An innovative piezoelectric energy harvester inspired by a line tooth: design, dynamic model and broadband harvesting conditions. Smart Materials and Structures, 31(8), 085006. doi:10.1088/1361-665x/ac798d.
[22] Thong, L. W., Kok, S. L., & Ramlan, R. (2022). Parameter Optimization of Nonlinear Piezoelectric Energy Harvesting System for IoT Applications. International Journal of Advanced Computer Science and Applications, 13(5), 355–363. doi:10.14569/IJACSA.2022.0130542.
[23] Hegendörfer, A., Steinmann, P., & Mergheim, J. (2023). Numerical Optimization of a Nonlinear Nonideal Piezoelectric Energy Harvester Using Deep Learning. Journal of Low Power Electronics and Applications, 13(1), 8. doi:10.3390/jlpea13010008.
[24] Sheeraz, M. A., Malik, M. S., Rehman, K., Elahi, H., Butt, Z., Ahmad, I., Eugeni, M., & Gaudenzi, P. (2021). Numerical assessment and parametric optimization of a piezoelectric wind energy harvester for IoT-based applications. Energies, 14(9), 2498. doi:10.3390/en14092498.
[25] Mostafa, M. G., Motakabber, S. M. A., Ibrahimy, M. I., & Rahman, T. (2015). Parameter optimization for piezoelectric micro-energy harvesting system. Proceedings - 5th International Conference on Computer and Communication Engineering: Emerging Technologies via Comp-Unication Convergence, ICCCE 2014, 36–39. doi:10.1109/ICCCE.2014.23.
[26] Mane, P., Mossi, K., & Green, C. (2009). Optimizing energy harvesting parameters using response surface methodology. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 56(3), 429–436. doi:10.1109/TUFFC.2009.1061.
[27] Rui, X., Li, Y., Liu, Y., Zheng, X., & Zeng, Z. (2018). Experimental study and parameter optimization of a magnetic coupled piezoelectric energy harvester. Applied Sciences (Switzerland), 8(12), 2609. doi:10.3390/app8122609.
[28] Patel, R., McWilliam, S., & Popov, A. A. (2014). Optimization of piezoelectric cantilever energy harvesters including non-linear effects. Smart Materials and Structures, 23(8), 85002. doi:10.1088/0964-1726/23/8/085002.
[29] Lin, Z., Yang, J., Zhao, J., Zhao, N., Liu, J., Wen, Y., & Li, P. (2016). Enhanced Broadband Vibration Energy Harvesting Using a Multimodal Nonlinear Magnetoelectric Converter. Journal of Electronic Materials, 45(7), 3554–3561. doi:10.1007/s11664-016-4531-4.
[30] Caetano, V. J., & Savi, M. A. (2025). Nonlinear Dynamics of a Piezoelectric Bistable Energy Harvester Using the Finite Element Method. Applied Sciences (Switzerland), 15(4). doi:10.3390/app15041990.
[31] Lin, Z., Li, H., Lv, S., Zhang, B., Wu, Z., & Yang, J. (2022). Magnetic Force-Assisted Nonlinear Three-Dimensional Wideband Energy Harvester Using Magnetostrictive/Piezoelectric Composite Transducers. Micromachines, 13(10). doi:10.3390/mi13101633.
[32] Wu, H., Tang, L., Avvari, P. V., Yang, Y., & Soh, C. K. (2013). Broadband energy harvesting using nonlinear 2-DOF configuration. In Active and Passive Smart Structures and Integrated Systems 2013 (Vol. 8688, p. 86880B). SPIE. doi:10.1117/12.2009100.
[33] Yang, J., Wen, Y., Li, P., Dai, X., & Li, M. (2010). A broadband vibration energy harvester using magnetoelectric transducer. In Proceedings of IEEE Sensors (pp. 1905–1909). IEEE. doi:10.1109/ICSENS.2010.5690026.
[34] Zhou, S., Cao, J., Erturk, A., & Lin, J. (2013). Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Applied Physics Letters, 102(17). doi:10.1063/1.4803445.
[35] Lallart, M., Richard, C., Garbuio, L., Petit, L., & Guyomar, D. (2011). High efficiency, wide load bandwidth piezoelectric energy scavenging by a hybrid nonlinear approach. Sensors and Actuators, A: Physical, 165(2), 294–302. doi:10.1016/j.sna.2010.09.022.
[36] Pasharavesh, A., Moheimani, R., & Dalir, H. (2020). Performance analysis of an electromagnetically coupled piezoelectric energy scavenger. Energies, 13(4), 845. doi:10.3390/en13040845.
[37] Upadrashta, D., & Yang, Y. (2016). Nonlinear piezomagnetoelastic harvester array for broadband energy harvesting. Journal of Applied Physics, 120(5). doi:10.1063/1.4960442.
[38] Keshmiri, A., & Wu, N. (2018). A Wideband Piezoelectric Energy Harvester Design by Using Multiple Non-Uniform Bimorphs. Vibration, 1(1), 93–104. doi:10.3390/vibration1010008.
[39] Hajati, A., & Kim, S. G. (2011). Ultra-wide bandwidth piezoelectric energy harvesting. Applied Physics Letters, 99(8). doi:10.1063/1.3629551.
[40] Li, P., Gao, S., Zhou, X., Liu, H., & Shi, J. (2017). Analytical modeling, simulation and experimental study for nonlinear hybrid piezoelectric–electromagnetic energy harvesting from stochastic excitation. Microsystem Technologies, 23(12), 5281–5292. doi:10.1007/s00542-017-3329-5.
[41] Foupouapouognigni, O., Nono Dueyou Buckjohn, C., Siewe Siewe, M., & Tchawoua, C. (2018). Hybrid electromagnetic and piezoelectric vibration energy harvester with Gaussian white noise excitation. Physica A: Statistical Mechanics and Its Applications, 509, 346–360. doi:10.1016/j.physa.2018.06.026.
[42] Li, P., Gao, S., & Cai, H. (2015). Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. Microsystem Technologies, 21(2), 401–414. doi:10.1007/s00542-013-2030-6.
[43] Li, P., Gao, S., Cai, H., & Wu, L. (2016). Theoretical analysis and experimental study for nonlinear hybrid piezoelectric and electromagnetic energy harvester. Microsystem Technologies, 22(4), 727–739. doi:10.1007/s00542-015-2440-8.
[44] Li, Q., Wang, C., Liu, C., Li, Z., Liu, X., & He, L. (2025). Development Trend of Nonlinear Piezoelectric Energy Harvesters. Journal of Electronic Materials, 54(1), 1–23. doi:10.1007/s11664-024-11575-y.
[45] Zhou, S., Cao, J., & Lin, J. (2016). Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters. Nonlinear Dynamics, 86(3), 1599–1611. doi:10.1007/s11071-016-2979-7.
[46] Kim, M., Hoegen, M., Dugundji, J., & Wardle, B. L. (2010). Modeling and experimental verification of proof mass effects on vibration energy harvester performance. Smart Materials and Structures, 19(4), 45023. doi:10.1088/0964-1726/19/4/045023.
[47] Erturk, A., & Inman, D. J. (2009). An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Materials and Structures, 18(2), 25009. doi:10.1088/0964-1726/18/2/025009.
[48] Abbasi, E. A., Allahverdizadeh, A., Jahangiri, R., & Dadashzadeh, B. (2017). Design and Analysis of a Piezoelectric Based AC Current Measuring Sensor. Article in International Journal of Mechanical & Mechatronics Engineering, 11(10), 1661–1666. doi:10.5281/zenodo.1132447.
[49] Kouritem, S. A., Al-Moghazy, M. A., Noori, M., & Altabey, W. A. (2022). Mass tuning technique for a broadband piezoelectric energy harvester array. Mechanical Systems and Signal Processing, 181, 109500. doi:10.1016/j.ymssp.2022.109500.
[50] Syed, F. H., Thong, L. W., & Chan, Y. K. (2023). Evaluation of Substrate Materials and Mass Structure on Piezoelectric Cantilever Based Energy Harvester. Journal of Engineering Science and Technology, 18(6), 3140–3154.
[51] Surmenev, R. A., Orlova, T., Chernozem, R. V., Ivanova, A. A., Bartasyte, A., Mathur, S., & Surmeneva, M. A. (2019). Hybrid lead-free polymer-based nanocomposites with improved piezoelectric response for biomedical energy-harvesting applications: A review. Nano Energy, 62, 475–506. doi:10.1016/j.nanoen.2019.04.090.
[52] Yang, Z., Zhou, S., Zu, J., & Inman, D. (2018). High-Performance Piezoelectric Energy Harvesters and Their Applications. Joule, 2(4), 642–697. doi:10.1016/j.joule.2018.03.011.
[53] Kumar, K., & Tyagi, A. (2025). Enhancing the Performance of Piezoelectric Vibration Energy Harvester Through Adjustments in the Geometric Configuration and the Volume of Additional Magnets. Journal of Vibration Engineering and Technologies, 13(1), 82. doi:10.1007/s42417-024-01615-6.
[54] Liu, H., Zhong, J., Lee, C., Lee, S. W., & Lin, L. (2018). A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Applied Physics Reviews, 5(4). doi:10.1063/1.5074184.
[56] Jaafar, M. I., Rabah, H. M. M. M., Nordin, N. H. D., Muthalif, A. G. A., & Wahid, A. N. (2021). Voltage Generation in Piezoelectric Energy Harvesting with Magnet: FEA Simulation and Experimental Analysis. Journal of Science and Technology, 13(2), 17–24. doi:10.30880/jst.2021.13.02.003.
- The authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.














