Effect of Ozone Treatment on Walnut Storage at Different Temperatures
Downloads
Modern approaches to food storage require the use of safe and effective methods for extending shelf life without compromising quality. One such method is ozone treatment, which has pronounced antimicrobial and antioxidant properties. In the context of the increasing demand for high-quality nuts with a long shelf life, it is important to study the effect of ozonation on their stability under various temperature conditions. The purpose of this study was to examine the effect of ozone treatment and storage temperatures (10°C and 25°C) on the physicochemical, microbiological, and organoleptic characteristics of walnuts of the ‘Kazakhstani Early-Maturing’ variety. Attention was primarily paid to the assessment of such indicators as the acid number, iodine number, peroxide number, moisture content, and toxic elements, as well as microbiological contamination. The significance of the work was in clarifying the effect of ozone on the stability of the nut lipid complex and the development of microflora during storage. The practical value of the study was in testing the applicability of a safe pre-treatment method that would help maintain the quality and safety of nut products. The methodology included treatment in sealed containers at an ozone concentration of 0.50 mg/m³ for 30 min, followed by storage at two temperatures. The results of the chemical, organoleptic and microbiological analyses showed that ozonation significantly reduced microbial contamination, stabilized the lipid components and slowed the development of oxidative processes, especially with storage at 10°C. The organoleptic properties of the nuts were maintained at a high level, with no signs of rancidity, changes in taste or smell. In confirming the effectiveness of ozone treatment as a means of improving the quality and safety of nut products, this study contributes to the field of nut storage technologies, and our findings can be used in developing regulations for the storage of nuts and other oil-containing crops.
Downloads
[1] Vernikovsky, V. V., Daironas, Z. V., Zilfikarov, I. N., & Khadzhieva, Z. D. (2019). Extraction of biologically active substances from raw walnut (Juglans regia L.) materials: current approaches. Farmaciya (Pharmacy), 68(1), 5–9. doi:10.29296/25419218-2019-01-01.
[2] Turfan, N., Savaci, G., & Sariyildiz, T. (2020). Variation in chemical compounds of walnut (Juglans regia L.) leaves with tree age. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 21(1), 124–134. doi:10.17474/artvinofd.583170.
[3] Elouafy, Y., El Yadini, A., El Moudden, H., Harhar, H., Alshahrani, M. M., Awadh, A. A. Al, Goh, K. W., Ming, L. C., Bouyahya, A., & Tabyaoui, M. (2022). Influence of the Extraction Method on the Quality and Chemical Composition of Walnut (Juglans regia L.) Oil. Molecules, 27(22), 7681. doi:10.3390/molecules27227681.
[4] Chamorro, F., Carpena, M., Lourenço-Lopes, C., Taofiq, O., Otero, P., Cao, H., Xiao, J., Simal-Gandara, J., & Prieto, M. A. (2022). By-Products of Walnut (Juglans regia) as a Source of Bioactive Compounds for the Formulation of Nutraceuticals and Functional Foods. The 2nd International Electronic Conference on Nutrients, MDPI, 35. doi:10.3390/iecn2022-12396.
[5] Jahanban-Esfahlan, A., Jahanban-Esfahlan, R., Tabibiazar, M., Roufegarinejad, L., & Amarowicz, R. (2020). Recent advances in the use of walnut (Juglans regia L.) shell as a valuable plant-based bio-sorbent for the removal of hazardous materials. Royal Society of Chemistry Advances, 10(12), 7026–7047. doi:10.1039/c9ra10084a.
[6] Olmedilla-Alonso, B., Granado-Lorencio, F., Herrero-Barbudo, C., Blanco-Navarro, I., Blázquez-García, S., & Pérez-Sacristán, B. (2008). Consumption of Restructured Meat Products with Added Walnuts Has a Cholesterol-Lowering Effect in Subjects at High Cardiovascular Risk: A Randomised, Crossover, Placebo-Controlled Study. Journal of the American College of Nutrition, 27(2), 342–348. doi:10.1080/07315724.2008.10719710.
[7] Kozdrach, R., & Radulski, P. (2025). Influence of a Walnut Shell Biochar Additive on the Tribological and Rheological Properties of Vegetable Lubricating Grease. Lubricants, 13(5), 213. doi:10.3390/lubricants13050213.
[8] Lavreniuk, P. (2024). Experimental studies of the drying process of walnuts in a convective bunker dryer. Vibrations in Engineering and Technology, 3(114), 111–119. doi:10.37128/2306-8744-2024-3-13.
[9] Tsyhanenko, L., Volkov, D., Shkromada, O., Tsyhanenko, H., Lutskovskyi, V., Shpota, V., & Reznichenko, Y. (2025). Influence of Vegetable Fats on Concrete of Agricultural Structures. Technology Audit and Production Reserves, 2(3), 6–11. doi:10.15587/2706-5448.2025.325094.
[10] Lemic, D., Zorić, B., Novak, A., Ivić, D., Galešić, M. A., & Viric Gasparic, H. (2025). The Effectiveness of Ozone Technology Application in Extending the Shelf Life of Berry Fruit. Applied Fruit Science, 67(1). doi:10.1007/s10341-025-01278-x.
[11] Giménez, B., Zaritzky, N., & Graiver, N. (2024). Ozone treatment of meat and meat products: a review. Frontiers in Food Science and Technology, 4, 1–11. doi:10.3389/frfst.2024.1351801.
[12] Huang, R., Zhou, Y., Zhang, J., Ji, F., Jin, F., Fan, W., & Pei, D. (2020). Transcriptome Analysis of Walnut (Juglans regia L.) Embryos Reveals Key Developmental Stages and Genes Involved in Lipid Biosynthesis and Polyunsaturated Fatty Acid Metabolism. Journal of Agricultural and Food Chemistry, 69(1), 377–396. doi:10.1021/acs.jafc.0c05598.
[13] Greve, L. C., McGranahan, G., Hasey, J., Snyder, R., Kelly, K., Goldhamer, D., & Labavitch, J. M. (1992). Variation in polyunsaturated fatty acids composition of Persian walnut. Journal of the American Society for Horticultural Science, 117(3), 518–522. doi:10.21273/jashs.117.3.518.
[14] Julvez, J., Gignac, F., Fernández-Barrés, S., Romaguera, D., Sala-Vila, A., Ranzani, O. T., Persavento, C., Delgado, A., Carol, A., Torrent, J., Gonzalez, J., Roso, E., Barrera-Gómez, J., López-Vicente, M., Garcia-Esteban, R., Boucher, O., Forns, J., Burgaleta, M., Sebastián, N., … Sunyer, J. (2021). Walnuts, Long-Chain Polyunsaturated Fatty Acids, and Adolescent Brain Development: Protocol for the Walnuts Smart Snack Dietary Intervention Trial. Frontiers in Pediatrics, 9, 1–7. doi:10.3389/fped.2021.593847.
[15] Danielli, M., Perne, L., Jarc Jovičić, E., & Petan, T. (2023). Lipid droplets and polyunsaturated fatty acid trafficking: Balancing life and death. Frontiers in Cell and Developmental Biology, 11, 1–14. doi:10.3389/fcell.2023.1104725.
[16] İlyasoğlu, H., & Yilmaz, F. (2019). Characterisation of yoghurt enriched with polyunsaturated fatty acids by using walnut slurry. International Journal of Dairy Technology, 72(1), 110–119. doi:10.1111/1471-0307.12565.
[17] Zhao, D., Hou, L., & Han, C. (2014). Characteristics and fatty acids composition of “Qinglin” walnut (Jugans regia L.). Acta Horticulturae, 1050, 161–164. doi:10.17660/actahortic.2014.1050.19.
[18] Fukasawa, R., Miyazawa, T., Abe, C., Bhaswant, M., & Toda, M. (2023). Quantification and Comparison of Nutritional Components in Oni Walnut (Juglans ailanthifolia Carr.), Hime Walnut (Juglans subcordiformis Dode.), and Cultivars. Horticulturae, 9(11), 1221. doi:10.3390/horticulturae9111221.
[19] Adkison, C., Richmond, K., Lingga, N., Bikoba, V., & Mitcham, E. (2021). Optimizing walnut storage conditions: Effects of relative humidity, temperature, and shelling on quality after storage. HortScience, 56(10), 1244–1250. doi:10.21273/HORTSCI15881-21.
[20] Habibi, F., Shahid, M. A., Jacobson, T., Voiniciuc, C., Brecht, J. K., & Sarkhosh, A. (2025). Postharvest Quality and Biochemical Changes in Blood Orange Fruit Exposed to Various Non-Chilling Storage Temperatures. Horticulturae, 11(5), 493. doi:10.3390/horticulturae11050493.
[21] Yaropud, V., & Lavreniuk, P. (2023). Ways of improving the design of the walnut convective dryer. engineering, energy, transport. Energy, Engineering, Transport AIC, 1(120), 120–131. doi:10.37128/2520-6168-2023-1-14.
[22] Shahedul Alam, M., Abdel Latef, A. A. H., & Ashrafuzzaman, M. (2021). Ozone and Enzymatic and Non-Enzymatic Antioxidant Enzymes in Plants. In Organic Solutes, Oxidative Stress, and Antioxidant Enzymes Under Abiotic Stressors (pp. 353–364). CRC Press. doi:10.1201/9781003022879-17.
[23] Roque, J., Carvalho, A., Rodrigues, M. Â., Correia, C. M., & Lima-Brito, J. (2024). Assessing the Effect of Plant Biostimulants and Nutrient-Rich Foliar Sprays on Walnut Nucleolar Activity and Protein Content (Juglans regia L.). Horticulturae, 10(4), 314. doi:10.3390/horticulturae10040314.
[24] Yakiyayeva, M. A., Iztayev, A. I., Kizatova, M. Z., Maemerov, M. M., Iztayeva, A. A., Feydengold, V. B., Tarabaev, B. K., & Chakanova, Z. M. (2016). Influence of ionic, ozone, ion-ozone and ion-ozone cavitational treatment on safety of the leguminous plants and oil-bearing crops at the storage. Journal of Engineering and Applied Sciences, 11(6), 1229–1234. doi:10.3923/jeasci.2016.1229.1234.
[25] Nurgozhina, Z., Shansharova, D., Umirzakova, G., Maliktayeva, P., & Yakiyayeva, M. (2022). The influence of grain mixtures on the quality and nutritional value of bread. Potravinarstvo Slovak Journal of Food Sciences, 16, 320–340. doi:10.5219/1767.
[26] Iztayev, A., Yakiyayeva, M., Kulazhanov, T., Kizatova, M., Maemerov, M., Stankevych, G., Toxanbayeva, B., Chakanova, Z. (2018). Efficient mathematical models of ion-ozon cavitation treatment for long-term storage of grain legume crops. Acta Technica CSAV (Ceskoslovensk Akademie Ved), 63(1B).
[27] Iztayev, A., Urazaliev, R., Yakiyayeva, M., Maemerov, M., Shaimerdenova, D., Iztayev, B., Toxanbayeva, B., Dauletkeldi, Y. (2018). Regress models of ion-ozon treatment without and with cavitation, describing changes of indicators for grain crops quality. Acta Technica CSAV (Ceskoslovensk Akademie Ved), 63(1B).
[28] Çelebi, Y., Koç, G. Ç., Süfer, Ö., Tekgül barut, Y., Şahin Ercan, S., Yüksel, A. N., Sezer, S., Ramniwas, S., Rastogi, S., Chandra Khanashyam, A., van Leeuwen, J., & Pandiselvam, R. (2024). Impact of Ozone Treatment on Lipid Oxidation in Foods: A Critical Review. Ozone: Science and Engineering, 46(5), 430–454. doi:10.1080/01919512.2024.2312907.
[29] Kaur, K., Pandiselvam, R., Kothakota, A., Padma Ishwarya, S., Zalpouri, R., & Mahanti, N. K. (2022). Impact of ozone treatment on food polyphenols – A comprehensive review. Food Control, 142, 109207. doi:10.1016/j.foodcont.2022.109207.
[30] Anjali, K. U., Reshma, C., Sruthi, N. U., Pandiselvam, R., Kothakota, A., Kumar, M., Siliveru, K., Marszałek, K., & Mousavi Khaneghah, A. (2024). Influence of ozone treatment on functional and rheological characteristics of food products: an updated review. Critical Reviews in Food Science and Nutrition, 64(12), 3687–3701. doi:10.1080/10408398.2022.2134292.
[31] Brodowska, A. J., Nowak, A., & Śmigielski, K. (2018). Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: An overview. Critical Reviews in Food Science and Nutrition, 58(13), 2176–2201. doi:10.1080/10408398.2017.1308313.
[32] GOST 32874-2014. (2015). Walnuts. Specifications. UNECE Standard DDP-01:2013, MOD. Standartinform, 1–15. Available online: https://internet-law.ru/gosts/gost/58311/ (accessed on November 2025).
[33] GOST 26593-95. (1999). Vegetable oils. Method for measuring peroxide value. Standartinform, 1–5. Available online: https://files.stroyinf.ru/Data2/1/4294827/4294827842.pdf (accessed on November 2025).
[34] GOST 31933-2012. (2019). Vegetable oils. Methods for determining acid value. Standartinform, 1–14. Available online: https://files.stroyinf.ru/Data2/1/4293781/4293781264.pdf (accessed on November 2025).
[35] GOST ISO 3961-2020. (2020). Animal and vegetable fats and oils. Determination of iodine value. Standartinform, 1–18. Available online: https://internet-law.ru/gosts/gost/73886/ (accessed on November 2025).
[36] GOST 29033-91. (2004). Grain and its processed products. Method for determination of fat. IPC: Standards Publishing House, 1–6. Available online: https://files.stroyinf.ru/Data2/1/4294825/4294825650.pdf (accessed on November 2025).
[37] GOST 25555.4-91. (2011). Processed products of fruits and vegetables. Methods for determination of ash and alkalinity of total and water-soluble ash. Standartinform, 1–6. Available online: https://internet-law.ru/gosts/gost/10506/ (accessed on November 2025).
[38] GOST 30178-96. (2010). Raw materials and food products. Atomic absorption method for determining toxic elements. Standartinform, 1–10. Available online: https://internet-law.ru/gosts/gost/9123 (accessed on November 2025).
[39] GOST 10444.12-2013. (2014). Microbiology of food products and animal feed. Methods for detecting and counting the number of yeasts and mould fungi. Standartinform, 1–12. Available online: https://internet-law.ru/gosts/gost/55923/ (accessed on November 2025).
[40] Ostapchuk, N. V., Kaminsky, V. D., Stankevich, G. N., & Chuchuy, V. P. (1992). Mathematical modeling of food production processes. Collection of problems. Kyiv: Higher school, 175.
[41] Ramírez-Mendoza, A. A., Ramírez-Herrera, M. A., Cortez-Álvarez, C. R., Nery-Flores, S. D., Tejeda-Martínez, A. R., Romero-Prado, M. M. de J., & Mendoza-Magaña, M. L. (2022). Curcumin Modifies the Activity of Plasmatic Antioxidant Enzymes and the Hippocampal Oxidative Profile in Rats upon Acute and Chronic Exposure to Ozone. Molecules, 27(14), 4531. doi:10.3390/molecules27144531.
[42] Ma, Y., Agathokleous, E., Xu, Y., Cao, R., He, L., & Feng, Z. (2024). Cultivar-specific regulation of antioxidant enzyme activity and stomatal closure confer tolerance of wheat to elevated ozone: A two-year open-field study with five cultivars. Plant Stress, 12, 100479. doi:10.1016/j.stress.2024.100479.
[43] Calatayud, A., & Barreno, E. (2001). Chlorophyll a fluorescence, antioxidant enzymes and lipid peroxidation in tomato in response to ozone and benomyl. Environmental Pollution, 115(2), 283–289. doi:10.1016/S0269-7491(01)00101-4.
[44] Dhas, N., Garkal, A., Kudarha, R., Hebbar, S., Mutalik, S., & Mehta, T. (2023). Carotenoid containing cationic nanoparticles for effective therapy for suppressing oxidative stress: An intranasal approach. OpenNano, 13, 100172. doi:10.1016/j.onano.2023.100172.
[45] Wang, Z., Zhang, A., Meng, W., Wang, T., Li, D., Liu, Z., & Liu, H. (2018). Ozone protects the rat lung from ischemia-reperfusion injury by attenuating NLRP3-mediated inflammation, enhancing Nrf2 antioxidant activity and inhibiting apoptosis. European Journal of Pharmacology, 835, 82–93. doi:10.1016/j.ejphar.2018.07.059.
- The authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.














