Ganoderma Disease in Oil Palm Trees Using Hyperspectral Imaging and Machine Learning
Abstract
Doi: 10.28991/HEF-2025-06-01-05
Full Text: PDF
Keywords
References
Kaniapan, S., Hassan, S., Ya, H., Nesan, K. P., & Azeem, M. (2021). The utilisation of palm oil and oil palm residues and the related challenges as a sustainable alternative in biofuel, bioenergy, and transportation sector: A review. Sustainability (Switzerland), 13(6), 3110. doi:10.3390/su13063110.
Ahmad, M. J., Ismail, R., & Ghani, F. A. (2023). Review on socioeconomic and sustainability of oil palm plantations among rural communities in Malaysia. IOP Conference Series: Earth and Environmental Science, 1208(1), 12054. doi:10.1088/1755-1315/1208/1/012054.
Parveez, G. K. A., Rasid, O. A., Ahmad, M. N., Taib, H. M., Bakri, M. A. M., Hafid, S. R. A., Tuan Ismail, T. N. M., Loh, S. K., Abdullah, M. O., Zakaria, K., & Idris, Z. (2023). Oil Palm Economic Performance in Malaysia and R&D Progress in 2022. Journal of Oil Palm Research, 35(2), 193–216. doi:10.21894/jopr.2023.0028.
Izzuddin, M. A., Ezzati, B., Nisfariza, M. N., Idris, A. S., & Alias, S. A. (2019). Analysis of red, green, blue (RGB) and near infrared (NIR) images from unmanned aerial vehicle (UAV) for detection of Ganoderma disease in oil palm. Oil Palm Bull, 79, 9-15.
Roslan, A., & Idris, A. S. (2012). Economic impact of Ganoderma incidence on Malaysian oil palm plantation–a case study in Johor. Oil Palm Industry Economic Journal, 12(1), 24-30.
Chong, K.P., Dayou, J., Alexander, A. (2017). Pathogenic Nature of Ganoderma boninense and Basal Stem Rot Disease. Detection and Control of Ganoderma boninense in Oil Palm Crop. SpringerBriefs in Agriculture. Springer, Cham, Switzerland. doi:10.1007/978-3-319-54969-9_2.
Ahmadi, P., Mansor, S., Farjad, B., & Ghaderpour, E. (2022). Unmanned Aerial Vehicle (UAV)-Based Remote Sensing for Early-Stage Detection of Ganoderma. Remote Sensing, 14(5), 1239. doi:10.3390/rs14051239.
Hushiarian, R., Yusof, N. A., & Dutse, S. W. (2013). Detection and control of Ganoderma boninense: Strategies and perspectives. SpringerPlus, 2(1), 1–12. doi:10.1186/2193-1801-2-555.
Pilotti, C. A., Gorea, E. A., & Bonneau, L. (2018). Basidiospores as sources of inoculum in the spread of Ganoderma boninense in oil palm plantations in Papua New Guinea. Plant Pathology, 67(9), 1841–1849. doi:10.1111/ppa.12915.
Hendra, H., Haryadi, D., Sidhu, M., Samosir, Y., & Tan, J. S. (2024). Comparative incidence of Ganoderma basal stem rot and upper stem rot disease in oil palm in relation to soil type and geographical distribution. IOP Conference Series: Earth and Environmental Science, 1308(1), 12016. doi:10.1088/1755-1315/1308/1/012016.
Rakib, M. R. M., Clament, C. F. S., Dayang Syazanie, A. E., & Darwana, D. (2020). Investigation on Ganoderma infection in oil palm based on the cultural characteristics and somatic compatibility: A case study in Sandakan, Sabah. ASM Science Journal, 13(6), 23–29.
Izzuddin, M. A., Hamzah, A., Nisfariza, M. N., & Idris, A. S. (2020). Analysis of multispectral imagery from unmanned aerial vehicle (UAV) using object-based image analysis for detection of Ganoderma disease in oil palm. Journal of Oil Palm Research, 32(3), 497–508. doi:10.21894/jopr.2020.0035.
Anuar, I. M., Arof, H. bin, Mohd Nor, N. binti, Hashim, Z. bin, Abu Seman, I. bin, Masri, M. M., Ibrahim, S. M., Tat, E. H., & Toh, C. M. (2021). Remote Sensing for Detection of Ganoderma Disease and Bagworm Infestation in Oil Palm. Advances in Agricultural and Food Research Journal, 2(1), 1-14. doi:10.36877/aafrj.a0000189.
Husin, N. A., Khairunniza-Bejo, S., Abdullah, A. F., Kassim, M. S. M., Ahmad, D., & Aziz, M. H. A. (2020). Classification of basal stem rot disease in oil palm plantations using terrestrial laser scanning data and machine learning. Agronomy, 10(11), 1624. doi:10.3390/agronomy10111624.
Khairunniza-Bejo, S., Shahibullah, M. S., Azmi, A. N. N., & Jahari, M. (2021). Non-destructive detection of asymptomatic ganoderma boninense infection of oil palm seedlings using nir-hyperspectral data and support vector machine. Applied Sciences (Switzerland), 11(22), 10878. doi:10.3390/app112210878.
Azmi, A. N. N., Bejo, S. K., Jahari, M., Muharam, F. M., Yule, I., & Husin, N. A. (2020). Early detection of Ganoderma boninense in oil palm seedlings using support vector machines. Remote Sensing, 12(23), 1–21. doi:10.3390/rs12233920.
Ahmadi, P., Muharam, F. M., Ahmad, K., Mansor, S., & Seman, I. A. (2017). Early detection of ganoderma basal stem rot of oil palms using artificial neural network spectral analysis. Plant Disease, 101(6), 1009–1016. doi:10.1094/PDIS-12-16-1699-RE.
Lelong, C. C. D., Roger, J.-M., Bregand, S., Dubertret, F., Lanore, M., Sitorus, N. A., Raharjo, D. A., & Caliman, J.-P. (2009). Discrimination of fungal disease infestation in oil-palm canopy hyperspectral reflectance data. 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 1–4. doi:10.1109/whispers.2009.5289017.
Shafri, H. Z. M., Anuar, M. I., & Saripan, M. I. (2009). Modified vegetation indices for Ganoderma disease detection in oil palm from field spectroradiometer data. Journal of Applied Remote Sensing, 3(1), 033556.
Izzuddin, M. A., Seman Idris, A., Nisfariza, M. N., Nordiana, A. A., Shafri, H. Z. M., & Ezzati, B. (2017). The development of spectral indices for early detection of Ganoderma disease in oil palm seedlings. International Journal of Remote Sensing, 38(23), 6505–6527. doi:10.1080/01431161.2017.1335908.
Liaghat, S., Ehsani, R., Mansor, S., Shafri, H. Z. M., Meon, S., Sankaran, S., & Azam, S. H. M. N. (2014). Early detection of basal stem rot disease (Ganoderma) in oil palms based on hyperspectral reflectance data using pattern recognition algorithms. International Journal of Remote Sensing, 35(10), 3427–3439. doi:10.1080/01431161.2014.903353.
Tan, M. I. S. M. H., Jamlos, M. F., Omar, A. F., Kamarudin, K., & Jamlos, M. A. (2023). Ganoderma boninense classification based on near-infrared spectral data using machine learning techniques. Chemometrics and Intelligent Laboratory Systems, 232. doi:10.1016/j.chemolab.2022.104718.
Liaghat, S., Mansor, S., Ehsani, R., Shafri, H. Z. M., Meon, S., & Sankaran, S. (2014). Mid-infrared spectroscopy for early detection of basal stem rot disease in oil palm. Computers and Electronics in Agriculture, 101, 48–54. doi:10.1016/j.compag.2013.12.012.
Hermantoro, Kurniawan, M. A., Trinugroho, J. P., Suparyanto, T., Isnan, M., Sudigyo, D., & Pardamean, B. (2023). Detecting Ganoderma Basal Stem Rot Disease on Oil Palm Using Artificial Neural Network Method. Communications in Mathematical Biology and Neuroscience, 7911. doi:10.28919/cmbn/7911.
Johari, S. N. Á. M., Bejo, S. K., Lajis, G. A., DaimDai, L. D. J., Keat, N. B., Ci, Y. Y., & Ithnin, N. (2021). Detecting BSR-infected Oil Palm Seedlings using Thermal Imaging Technique. Basrah Journal of Agricultural Sciences, 34, 73–80. doi:10.37077/25200860.2021.34.sp1.8.
Hashim, I. C., Shariff, A. R. M., Bejo, S. K., Muharam, F. M., & Ahmad, K. (2021). Classification of non-infected and infected with basal stem rot disease using thermal images and imbalanced data approach. Agronomy, 11(12), 2373. doi:10.3390/agronomy11122373.
Wiratmoko, D., Prasetyo, A. E., Jatmiko, R. H., Yusuf, M. A., & Rahutomo, S. (2018). Identification of Ganoderma boninense infection levels on oil palm using vegetation index. International Journal of Oil Palm, 1(3), 110-120.
Ahmadi, P., Mansor, S. B., Ahmadzadeh Araji, H., & Lu, B. (2023). Convolutional SVM Networks for Detection of Ganoderma Boninense at Early Stage in Oil Palm Using Uav and Multispectral Pleiades Images. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, X-4/W1-2022, 25–30. doi:10.5194/isprs-annals-x-4-w1-2022-25-2023.
Wahyuni, M., Sabrina, T., Mukhlis, & Santoso, H. (2024). Using Machine Learning in Detecting Ganoderma Disease in Oil Palm Plants. International Journal of Intelligent Systems and Applications in Engineering, 12(16s), 145–155.
Handrian, R. D., Trisasongko, B. H., & Panuju, D. R. (2022). Discriminating the Severity of Basal Stem Rot Disease in Oil Palm (Elaeis guineensis Jacq.) Plantation Using Sentinel-2. IOP Conference Series: Earth and Environmental Science, 950(1), 12043. doi:10.1088/1755-1315/950/1/012043.
Yong, L. Z., Khairunniza-Bejo, S., Jahari, M., & Muharam, F. M. (2023). Automatic Disease Detection of Basal Stem Rot Using Deep Learning and Hyperspectral Imaging. Agriculture (Switzerland), 13(1), 69. doi:10.3390/agriculture13010069.
Kurihara, J., Koo, V. C., Guey, C. W., Lee, Y. P., & Abidin, H. (2022). Early Detection of Basal Stem Rot Disease in Oil Palm Tree Using Unmanned Aerial Vehicle-Based Hyperspectral Imaging. Remote Sensing, 14(3), 799. doi:10.3390/rs14030799.
Lee, C. C., Koo, V. C., Lim, T. S., Lee, Y. P., & Abidin, H. (2022). A multi-layer perceptron-based approach for early detection of BSR disease in oil palm trees using hyperspectral images. Heliyon, 8(4), e9252. doi:10.1016/j.heliyon.2022.e09252.
Win Kent, O., Weng Chun, T., Lee Choo, T., & Weng Kin, L. (2023). Early symptom detection of basal stem rot disease in oil palm trees using a deep learning approach on UAV images. Computers and Electronics in Agriculture, 213, 108192. doi:10.1016/j.compag.2023.108192.
Aasen, H., Honkavaara, E., Lucieer, A., & Zarco-Tejada, P. J. (2018). Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: A review of sensor technology, measurement procedures, and data correction workflows. Remote Sensing, 10(7), 1091. doi:10.3390/rs10071091.
Vakalopoulou, M., & Karantzalos, K. (2014). Automatic descriptor-based co-registration of frame hyperspectral data. Remote Sensing, 6(4), 3409–3426. doi:10.3390/rs6043409.
Halicek, M., Fabelo, H., Ortega, S., Callico, G. M., & Fei, B. (2019). In-vivo and ex-vivo tissue analysis through hyperspectral imaging techniques: Revealing the invisible features of cancer. Cancers, 11(6), 756. doi:10.3390/cancers11060756.
Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110. doi:10.1023/B:VISI.0000029664.99615.94.
Pearson, K. (1896). VII. Mathematical contributions to the theory of evolution.—III. Regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 187, 253–318. doi:10.1098/rsta.1896.0007.
Studholme, C., Hill, D. L. G., & Hawkes, D. J. (1999). An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition, 32(1), 71–86. doi:10.1016/S0031-3203(98)00091-0.
Angel, Y. (2021). Monitoring crop development and health using UAV-based hyperspectral imagery and machine learning. PhD Thesis, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
DOI: 10.28991/HEF-2025-06-01-05
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Chee Seng Kwang, Siti Fatimah Abdul Razak, Sumendra Yogarayan, M. Z. Adli Zahisham, Tze Huey Tam, M. K. Anuar Mohd Noor, Haryati Abidin