Precise Genotype Selection in 'PSL2-Xa21' Rice Introgression Lines Using Whole Genome Sequencing
Downloads
Rice bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), poses a major threat to global rice production. Enhancing BB resistance through gene introgression is a sustainable strategy for disease management, particularly in elite cultivars like ‘Phitsanulok2’ (‘PSL2’), which has high yield potential and insect resistance but is susceptible to BB. This study improved BB resistance in ‘PSL2’ by introgressing the Xa21 gene, a broad-spectrum resistance gene from the donor parent ‘IRBB21’ through backcross breeding combined with whole genome sequencing (WGS)-assisted selection. Three BC5F6 introgression lines were evaluated for agronomic performance and BB resistance under field conditions. These lines exhibited increased plant height and grain yield compared to both parents, with no significant differences in tiller numbers. Lines ‘A’ and ‘B’ showed moderate resistance (MR) to BB, while line ‘C’ demonstrated resistance (R). WGS revealed that seven of the nine BC5F6 lines retained 71.78%–73.31% genomic similarity with the recurrent parent ‘PSL2’. Seventeen Xa21-mediated immune response genes were identified, highlighting their potential contributions to BB resistance. Genomic composition analysis showed substantial recovery of the recurrent parent genome, with notable donor genome segments retained on chromosome 11 and heterozygous regions observed on chromosomes 3, 6, 7, 8, and 9. Subsequent evaluation of BC5F7 lines under greenhouse conditions confirmed significant improvements in plant height, tiller number, and grain yield with moderate BB resistance in seven of the nine lines. Results demonstrated the effectiveness of combining advanced backcross breeding with WGS-assisted selection to develop high-yielding, BB-resistant rice lines. The identification of immune-related genes and their interactions offers valuable insights for optimizing future rice breeding strategies.
Downloads
[1] Fukagawa, N. K., & Ziska, L. H. (2019). Rice: importance for global nutrition. Journal of Nutritional Science and Vitaminology, 65, S2–S3. doi:10.3177/jnsv.65.S2.
[2] USAD. (2025). Grain: World markets and trade (April 2025). United States Department of Agriculture (USAD), Washington, D.C., United States. Available online: https://apps.fas.usda.gov/psdonline/app/index.html#/app/downloads (accessed on May 2025).
[3] Yuan, S., Stuart, A. M., Laborte, A. G., Rattalino Edreira, J. I., Dobermann, A., Kien, L. V. N., Thúy, L. T., Paothong, K., Traesang, P., Tint, K. M., San, S. S., Villafuerte, M. Q., Quicho, E. D., Pame, A. R. P., Then, R., Flor, R. J., Thon, N., Agus, F., Agustiani, N., … Grassini, P. (2022). Southeast Asia must narrow down the yield gap to continue to be a major rice bowl. Nature Food, 3(3), 217–226. doi:10.1038/s43016-022-00477-z.
[4] FAO. (2024). FAOSTAT: Crops and livestock products [Database]. Food and Agriculture Organization of the United Nations, Rome, Italy. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on May 2025).
[5] Kamhun, W., Pheng-A, S., Uppananchai, T., Ratanasut, K., & Rungrat, T. (2022). Effects of nitrogen levels on sucrose content, disease severity of Xanthomonas oryzae pv. oryzae and yield of hybrid rice (BC4F5). Agriculture and Natural Resources, 56(5), 909–916. doi:10.34044/j.anres.2022.56.5.05.
[6] Meesa, N., Sujipuli, K., Ratanasut, K., Pongcharoen, P., Rungrat, T., Boonsrangsom, T., Pathaichindachote, W., & Inthima, P. (2024). Salicylic acid application against bacterial blight resistance in Xa21-introgression Thai rice cultivar ‘Phitsanulok 2.’ Acta Agrobotanica, 77. doi:10.5586/AA/188569.
[7] Boonsrangsom, T., Boondech, A., Chansongkram, W., Suachaowna, N., Buddhachat, K., Rungrat, T., Jumpathong, J., Pongcharoen, P., Inthima, P., Aeksiri, N., Ratanasut, K., & Sujipuli, K. (2025). Molecular characterization and pathogenicity of Xanthomonas oryzae pv. oryzae isolates from lower northern Thailand, the causal agent of rice bacterial blight. Physiological and Molecular Plant Pathology, 136, 102550. doi:10.1016/j.pmpp.2024.102550.
[8] Ansari, T. H., Ahmed, M., Akter, S., Mian, M. S., Latif, M. A., & Tomita, M. (2020). Estimation of Rice Yield Loss Using a Simple Linear Regression Model for Bacterial Blight Disease. Bangladesh Rice Journal, 23(1), 73–79. doi:10.3329/brj.v23i1.46083.
[9] Rajarajeswari, N. V. L., & Muralidharan, K. (2006). Assessments of farm yield and district production loss from bacterial leaf blight epidemics in rice. Crop Protection, 25(3), 244–252. doi:10.1016/j.cropro.2005.04.013.
[10] K. Reddy, A. P. (1979). Relationship of Bacterial Leaf Blight Severity to Grain Yield of Rice. Phytopathology, 69(9), 967. doi:10.1094/phyto-69-967.
[11] Kim, S. M., & Reinke, R. F. (2019). A novel resistance gene for bacterial blight in rice, Xa43(t) identified by GWAS, confirmed by QTL mapping using a bi-parental population. PLoS ONE, 14(2), 211775. doi:10.1371/journal.pone.0211775.
[12] Ashwini, S., Prashanthi, S. K., Vidyashankar, D., Hegde, Y. R., Krishnaraju, P. U., Muttappagol, M., Krishnanand, I., & Abinash. (2024). Insights into the virulence profiles and molecular diversity of Xanthomonas oryzae pv. oryzae isolates associated with bacterial blight of rice in major districts of Karnataka, India. Physiological and Molecular Plant Pathology, 133, 102338. doi:10.1016/j.pmpp.2024.102338.
[13] Sawatphanit, N., Sutthisa, W., & Kumlung, T. (2022). Bioformulation Development of Bacillus velezensis Strain N1 to Control Rice Bacterial Leaf Blight. Trends in Sciences, 19(21), 6315. doi:10.48048/tis.2022.6315.
[14] Nasir, M., Iqbal, B., Hussain, M., Mustafa, A., & Ayub, M. (2019). Chemical management of bacterial leaf blight disease in rice. J. Agric. Res, 57(2), 93–98. doi:10.58475/mk7pj782.
[15] Jiang, N., Yan, J., Liang, Y., Shi, Y., He, Z., Wu, Y., Zeng, Q., Liu, X., & Peng, J. (2020). Resistance Genes and their Interactions with Bacterial Blight/Leaf Streak Pathogens (Xanthomonas oryzae) in Rice (Oryza sativa L.)—an Updated Review. Rice, 13(1), 3. doi:10.1186/s12284-019-0358-y.
[16] Fiyaz, R. A., Shivani, D., Chaithanya, K., Mounika, K., Chiranjeevi, M., Laha, G. S., Viraktamath, B. C., Rao, L. V. S., & Sundaram, R. M. (2022). Genetic Improvement of Rice for Bacterial Blight Resistance: Present Status and Future Prospects. Rice Science, 29(2), 118–132. doi:10.1016/j.rsci.2021.08.002.
[17] Gautam, R. K., Singh, P. K., Sakthivel, K., Venkatesan, K., Rao, S. S., Srikumar, M., Vijayan, J., Rakesh, B., Ray, S., Akhtar, J., Meena, B. R., Langyan, S., Ali, S., & Krishnamurthy, S. L. (2023). Marker-assisted enhancement of bacterial blight (Xanthomonas oryzae pv. oryzae) resistance in a salt-tolerant rice variety for sustaining rice production of tropical islands. Frontiers in Plant Science, 14, 1221537. doi:10.3389/fpls.2023.1221537.
[18] Ullah, I., Ali, H., Mahmood, T., Khan, M. N., Haris, M., Shah, H., Mihoub, A., Jamal, A., Saeed, M. F., Mancinelli, R., & Radicetti, E. (2023). Pyramiding of Four Broad Spectrum Bacterial Blight Resistance Genes in Cross Breeds of Basmati Rice. Plants, 12(1), 46. doi:10.3390/plants12010046.
[19] Rashid, M. M., Nihad, S. A. I., Khan, M. A. I., Haque, A., Ara, A., Ferdous, T., Hasan, M. A. I., & Latif, M. A. (2021). Pathotype profiling, distribution and virulence analysis of Xanthomonas oryzae pv. oryzae causing bacterial blight disease of rice in Bangladesh. Journal of Phytopathology, 169(7–8), 438–446. doi:10.1111/jph.13000.
[20] Peng, H., Chen, Z., Fang, Z., Zhou, J., Xia, Z., Gao, L., Chen, L., Li, L., Li, T., Zhai, W., & Zhang, W. (2015). Rice Xa21 primed genes and pathways that are critical for combating bacterial blight infection. Scientific Reports, 5, 12165. doi:10.1038/srep12165.
[21] Luu, D. D., Joe, A., Chen, Y., Parys, K., Bahar, O., Pruitt, R., Chan, L. J. G., Petzold, C. J., Long, K., Adamchak, C., Stewart, V., Belkhadir, Y., & Ronald, P. C. (2019). Biosynthesis and secretion of the microbial sulfated peptide RaxX and binding to the rice XA21 immune receptor. Proceedings of the National Academy of Sciences of the United States of America, 116(17), 8525–8534. doi:10.1073/pnas.1818275116.
[22] Govintharaj, P., Manonmani, S., Karthika, G., & Robin, S. (2021). Introgression of Bacterial Blight Resistance Genes (Xa21, xa13 and xa5) into CB 174 R, an Elite Restorer Line in Rice. Biology and Life Sciences Forum, 4, 72. doi:10.3390/iecps2020-08759.
[23] Zahara, E., Darmawi, Balqis, U., & Soraya, C. (2024). The Potential of Ethanol Extract of Aleurites Moluccanus Leaves as TNF-α Inhibitor in Oral Incision Wound Care Model. Journal of Human, Earth, and Future, 5(4), 674–687. doi:10.28991/HEF-2024-05-04-010.
[24] Haque, M. A., Rafii, M. Y., Yusoff, M. M., Ali, N. S., Yusuff, O., Datta, D. R., Anisuzzaman, M., & Ikbal, M. F. (2021). Recent advances in rice varietal development for durable resistance to biotic and abiotic stresses through marker-assisted gene pyramiding. Sustainability (Switzerland), 13(19), 10806. doi:10.3390/su131910806.
[25] Suachaowna, N., Grandmottet, F., Sanyong, S., Palawisut, S., Sujipuli, K., & Ratanasut, K. (n.d.). The Xa21 in the backcross introgression lines, BC4F2, derived from the Thai rice cultivar “RD47’/’IRBB21” cross enhances the bacterial blight resistance against Xanthomonas oryzae pv. oryzae newly isolated from Phitsanulok province. Proceedings of the 13th Asian Congress on Biotechnology 2017, 117.
[26] Biswas, P. L., Nath, U. K., Ghosal, S., Goswami, G., Uddin, M. S., Ali, O. M., Latef, A. A. H. A., Laing, A. M., Gao, Y. M., & Hossain, A. (2021). Introgression of bacterial blight resistance genes in the rice cultivar ciherang: Response against xanthomonas oryzae pv. oryzae in the f6 generation. Plants, 10(10). doi:10.3390/plants10102048.
[27] Meuwissen, T., Hayes, B., & Goddard, M. (2016). Genomic selection: A paradigm shift in animal breeding. Animal Frontiers, 6(1), 6–14. doi:10.2527/af.2016-0002.
[28] Varshney, R. K., Pandey, M. K., Bohra, A., Singh, V. K., Thudi, M., & Saxena, R. K. (2019). Toward the sequence-based breeding in legumes in the post-genome sequencing era. Theoretical and Applied Genetics, 132(3), 797–816. doi:10.1007/s00122-018-3252-x.
[29] Tomita, M., Tokuyama, R., Matsumoto, S., & Ishii, K. (2022). Whole-Genome Sequencing Revealed a Late-Maturing Isogenic Rice Koshihikari Integrated with Hd16 Gene Derived from an Ise Shrine Mutant. International Journal of Genomics, 2022, 4565977. doi:10.1155/2022/4565977.
[30] de Souza, I. P., de Azevedo, B. R., Coelho, A. S. G., de Souza, T. L. P. O., Valdisser, P. A. M. R., Gomes-Messias, L. M., Funicheli, B. O., Brondani, C., & Vianello, R. P. (2023). Whole-genome resequencing of common bean elite breeding lines. Scientific Reports, 13(1), 12721. doi:10.1038/s41598-023-39399-6.
[31] Balone, T., Pratama, A. N., Chansongkram, W., Boonsrangsom, T., Sujipuli, K., & Ratanasut, K. (2024). Development and Validation of an SNP Marker for Identifying Xanthomonas oryzae pv. oryzae Thai Isolates That Break xa5-Mediated Bacterial Blight Resistance in Rice. Plant Pathology Journal, 40(5), 451–462. doi:10.5423/PPJ.OA.04.2024.0070.
[32] Ke, Y., Hui, S., & Yuan, M. (2017). Xanthomonas oryzae pv. oryzae Inoculation and Growth Rate on Rice by Leaf Clipping Method. Bio-Protocol, 7(19), 2568. doi:10.21769/bioprotoc.2568.
[33] IRRI. (2013). Standard Evaluation System for Rice (5th ed.). International Rice Research Institute, Los Baños, Philippines.
[34] Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633–2635. doi:10.1093/bioinformatics/btm308.
[35] Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S. J., & Marra, M. A. (2009). Circos: An information aesthetic for comparative genomics. Genome Research, 19(9), 1639–1645. doi:10.1101/gr.092759.109.
[36] Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. doi:10.1093/molbev/msab120.
[37] Postma, M., & Goedhart, J. (2019). Plotsofdata—a web app for visualizing data together with their summaries. PLoS Biology, 17(3), 3000202. doi:10.1371/journal.pbio.3000202.
[38] Mackay, I. J., Cockram, J., Howell, P., & Powell, W. (2021). Understanding the classics: the unifying concepts of transgressive segregation, inbreeding depression and heterosis and their central relevance for crop breeding. Plant Biotechnology Journal, 19(1), 26–34. doi:10.1111/pbi.13481.
[39] Zhang, N., Dong, X., Jain, R., Ruan, D., de Araujo Junior, A. T., Li, Y., Lipzen, A., Martin, J., Barry, K., & Ronald, P. C. (2024). XA21-mediated resistance to Xanthomonas oryzae pv. oryzae is dose dependent. PeerJ, 12(5), 17323. doi:10.7717/peerj.17323.
[40] Blanco-Pastor, J. L. (2022). Alternative Modes of Introgression-Mediated Selection Shaped Crop Adaptation to Novel Climates. Genome Biology and Evolution, 14(8), 107. doi:10.1093/gbe/evac107.
[41] Hospital, F. (2005). Selection in backcross programmes. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1459), 1503–1511. doi:10.1098/rstb.2005.1670.
[42] Gao, L., Cao, Y., Xia, Z., Jiang, G., Liu, G., Zhang, W., & Zhai, W. (2013). Do transgenesis and marker-assisted backcross breeding produce substantially equivalent plants? - A comparative study of transgenic and backcross rice carrying bacterial blight resistant gene Xa21. BMC Genomics, 14(1), 738. doi:10.1186/1471-2164-14-738.
[43] Zhang, X. Y., Tong, Y. P., You, G. X., Hao, C. Y., Ge, H. M., Lanfen, W., Li, B., Dong, Y. S., & Li, Z. S. (2007). Hitchhiking effect mapping: a new approach for discovering agronomic important genes. Agricultural Sciences in China, 6, 255–264. doi:10.1016/S1671-2927(07)60043-1.
[44] Abdeen, A., Schnell, J., & Miki, B. (2010). Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3. BMC Genomics, 11(1), 266–282. doi:10.1186/1471-2164-11-69.
[45] Meuwissen, T., van den Berg, I., & Goddard, M. (2021). On the use of whole-genome sequence data for across-breed genomic prediction and fine-scale mapping of QTL. Genetics Selection Evolution, 53(1), 19. doi:10.1186/s12711-021-00607-4.
[46] Torgeman, S., & Zamir, D. (2023). Epistatic QTLs for yield heterosis in tomato. Proceedings of the National Academy of Sciences of the United States of America, 120(14), 2205787119. doi:10.1073/pnas.2205787119.
[47] Wang, C., Wang, Z., Cai, Y., Zhu, Z., Yu, D., Hong, L., Wang, Y., Lv, W., Zhao, Q., Si, L., Liu, K., & Han, B. (2024). A higher-yield hybrid rice is achieved by assimilating a dominant heterotic gene in inbred parental lines. Plant Biotechnology Journal, 22(6), 1669–1680. doi:10.1111/pbi.14295.
[48] Gu, Z., Gong, J., Zhu, Z., Li, Z., Feng, Q., Wang, C., Zhao, Y., Zhan, Q., Zhou, C., Wang, A., Huang, T., Zhang, L., Tian, Q., Fan, D., Lu, Y., Zhao, Q., Huang, X., Yang, S., & Han, B. (2023). Structure and function of rice hybrid genomes reveal genetic basis and optimal performance of heterosis. Nature Genetics, 55(10), 1745–1756. doi:10.1038/s41588-023-01495-8.
[49] Hashimoto, S., Wake, T., Nakamura, H., Minamiyama, M., Araki-Nakamura, S., Ohmae-Shinohara, K., Koketsu, E., Okamura, S., Miura, K., Kawaguchi, H., Kasuga, S., & Sazuka, T. (2021). The dominance model for heterosis explains culm length genetics in a hybrid sorghum variety. Scientific Reports, 11(1), 4532. doi:10.1038/s41598-021-84020-3.
[50] Lin, T., Zhou, C., Chen, G., Yu, J., Wu, W., Ge, Y., Liu, X., Li, J., Jiang, X., Tang, W., Tian, Y., Zhao, Z., Zhu, C., Wang, C., & Wan, J. (2020). Heterosis-associated genes confer high yield in super hybrid rice. Theoretical and Applied Genetics, 133(12), 3287–3297. doi:10.1007/s00122-020-03669-y.
[51] Liu, Z., Li, P., Yu, L., Hu, Y., Du, A., Fu, X., Wu, C., Luo, D., Hu, B., Dong, H., Jiang, H., Ma, X., Huang, W., Yang, X., Tu, S., & Li, H. (2023). OsMADS1 Regulates Grain Quality, Gene Expressions, and Regulatory Networks of Starch and Storage Protein Metabolisms in Rice. International Journal of Molecular Sciences, 24(9), 8017. doi:10.3390/ijms24098017.
[52] Yuan, M., Ngou, B. P. M., Ding, P., & Xin, X. F. (2021). PTI-ETI crosstalk: an integrative view of plant immunity. Current Opinion in Plant Biology, 62, 102030. doi:10.1016/j.pbi.2021.102030.
[53] Liu, F., McDonald, M., Schwessinger, B., Joe, A., Pruitt, R., Erickson, T., Zhao, X., Stewart, V., & Ronald, P. C. (2019). Variation and inheritance of the Xanthomonas raxX-raxSTAB gene cluster required for activation of XA21-mediated immunity. Molecular Plant Pathology, 20(5), 656–672. doi:10.1111/mpp.12783.
[54] Ercoli, M. F., Luu, D. D., Rim, E. Y., Shigenaga, A., de Araujo, A. T., Chern, M., Jain, R., Ruan, R., Joe, A., Stewart, V., & Ronald, P. (2022). Plant immunity: Rice XA21-mediated resistance to bacterial infection. Proceedings of the National Academy of Sciences of the United States of America, 119(8), 2121568119. doi:10.1073/pnas.2121568119.
[55] Kumar, M., Singh, R. P., Jena, D., Singh, V., Rout, D., Arsode, P. B., Choudhary, M., Singh, P., Chahar, S., Samantaray, S., Mukherjee, A. K., Mohan, C., Bohra, A., Das, G., Balo, S., Singh, O. N., & Verma, R. (2023). Marker-Assisted Improvement for Durable Bacterial Blight Resistance in Aromatic Rice Cultivar HUR 917 Popular in Eastern Parts of India. Plants, 12(6), 1363. doi:10.3390/plants12061363.
[56] Boondech, A., Sujipuli, K., Ratanasut, K., Rungrat, T., Boonsangsrom, T., Aeksiri, N., Tawong, W., & Pongcharoen, P. (2024). Expression profiles of XIK1 and OsSWEET14 genes in parental and backcrossing rice lines after Xanthomonas oryzae pv. oryzae infection. Indonesian Journal of Biotechnology, 29(2), 56–63. doi:10.22146/ijbiotech.89092.
[57] Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329. doi:10.1038/nature05286.
[58] Shamsunnaher, Chen, X., Zhang, X., Wu, X. X., Huang, X., & Song, W. Y. (2020). Rice immune sensor XA21 differentially enhances plant growth and survival under distinct levels of drought. Scientific Reports, 10(1), 16938. doi:10.1038/s41598-020-73128-7.
[59] Wang, Y. S., Pi, L. Y., Chen, X., Chakrabarty, P. K., Jiang, J., De Leon, A. L., Liu, G. Z., Li, A., Benny, U., Oard, J., Ronald, P. C., & Song, W. Y. (2006). Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. Plant Cell, 18(12), 3635–3646. doi:10.1105/tpc.106.046730.
[60] Zhu, Z., Wang, T., Lan, J., Ma, J., Xu, H., Yang, Z., Guo, Y., Chen, Y., Zhang, J., Dou, S., Yang, M., Li, L., & Liu, G. (2022). Rice MPK17 Plays a Negative Role in the Xa21-Mediated Resistance Against Xanthomonas oryzae pv. oryzae. Rice, 15(1), 41. doi:10.1186/s12284-022-00590-4.
[61] Lemon Sagun, C. M., Grandmottet, F., & Ratanasut, K. (2019). Differential expression of Xoo-induced kinase 1 (XIK1), a Xanthomonas oryzae pv. Oryzae responsive gene, in bacterial blight-susceptible and Xa21-mediated resistant indica rice cultivars. Agriculture and Natural Resources, 53(4), 334–339. doi:10.34044/j.anres.2019.53.4.02.
[62] Pruitt, R. N., Schwessinger, B., Joe, A., Thomas, N., Liu, F., Albert, M., Robinson, M. R., Chan, L. J. G., Luu, D. D., Chen, H., Bahar, O., Daudi, A., De Vleesschauwer, D., Caddell, D., Zhang, W., Zhao, X., Li, X., Heazlewood, J. L., Ruan, D., … Ronald, P. C. (2015). The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. Science Advances, 1(6), 1500245. doi:10.1126/sciadv.1500245.
[63] Gao, L., Fang, Z., Zhou, J., Li, L., Lu, L., Li, L., Li, T., Chen, L., Zhang, W., Zhai, W., & Peng, H. (2018). Transcriptional insights into the pyramided resistance to rice bacterial blight. Scientific Reports, 8(1), 12358. doi:10.1038/s41598-018-29899-1.
[64] Joe, A., Stewart, V., & Ronald, P. C. (2021). The HrpX Protein Activates Synthesis of the RaxX Sulfopeptide, Required for Activation of XA21-Mediated Immunity to Xanthomonas oryzae pv. oryzae. Molecular Plant-Microbe Interactions, 34(11), 1307–1315. doi:10.1094/MPMI-05-21-0124-R.
[65] Vo, K. T. X., Kim, C. Y., Hoang, T. V., Lee, S. K., Shirsekar, G., Seo, Y. S., Lee, S. W., Wang, G. L., & Jeon, J. S. (2018). OsWRKY67 plays a positive role in basal and XA21-mediated resistance in rice. Frontiers in Plant Science, 8, 2220. doi:10.3389/fpls.2017.02220.
[66] Kanipriya, R., Natarajan, S., Gopalakrishnan, C., Ramalingam, J., Saraswathi, R., & Ramanathan, A. (2024). Screening for disease resistance and profiling the expression of defense-related genes contributing to resistance against bacterial blight (Xanthomonas oryzae pv. oryzae) in rice genotypes. Physiological and Molecular Plant Pathology, 131. doi:10.1016/j.pmpp.2024.102286.
[67] Wang, T., Zhu, Z., Chen, Y., Liu, Y., Yan, G., Xu, S., Zhang, T., Ma, J., Dou, S., Li, L., & Liu, G. (2021). Rice OsWRKY42 is a Novel Element in Xa21-mediated Resistance Pathway Against Bacterial Leaf Blight. Botanical Journal, 56(6), 687–698. doi:10.11983/CBB21025.
[68] Yang, S., Zhou, L., Miao, L., Shi, J., Sun, C., Fan, W., Lan, J., Chen, H., Liu, L., Dou, S., Liu, G., & Li, L. (2016). The expression and binding properties of the rice WRKY68 protein in the Xa21-mediated resistance response to Xanthomonas oryzae pv. Oryzae. Journal of Integrative Agriculture, 15, 2451–2460. doi:10.1016/s2095-3119(15)61265-5.
[69] Prigge, V., Maurer, H. P., Mackill, D. J., Melchinger, A. E., & Frisch, M. (2008). Comparison of the observed with the simulated distributions of the parental genome contribution in two marker-assisted backcross programs in rice. Theoretical and Applied Genetics, 116(5), 739–744. doi:10.1007/s00122-007-0707-x.
[70] Jia, Y. (2009). Artificial introgression of a large chromosome fragment around the rice blast resistance gene Pi-ta in backcross progeny and several elite rice cultivars. Heredity, 103(4), 333–339. doi:10.1038/hdy.2009.95.
- The authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
