Alternative Fuel: Hydrogen and its Thermodynamic Behaviour

R. Balasubramanian, A. Abishek, S. Gobinath, K. Jaivignesh

Abstract


Hydrogen is a contender for alternative energy. Hydrogen fuel cell vehicles and hydrogen-based low-carbon fuels will contribute to the decarburization of the mobility sector, shipping and aviation. Hydrogen is used as a rocket fuel. In addition, petroleum refining, semiconductor manufacturing, aerospace industry, fertilizer production, metal treatment, pharmaceutical, power plant generator, methanol production, commercial fixation of nitrogen from air reduction of metallic ores. Also, hydrogen is used to turn unsaturated fats into saturated fats and oils. In the enhancement of NMR and MRI signals, parahydrogen is used. Parahydrogen and orthohydrogen are nuclear spin isomers of hydrogen. At room temperature, the normal hydrogen at thermal equilibrium consists of 75% orthohydrogen and 25% parahydrogen. The development of hydrogen technology requires knowledge of the thermophysical properties of hydrogen. The second virial coefficient characterizes the primary interaction between the molecules. Therefore, knowledge of the second virial coefficient enables one to determine the pairwise molecular interaction and, in turn, the thermodynamic behaviour of hydrogen. The present study is based on three parameter modified Berthelot Equation of state aims to determine the second virial coefficient of hydrogen and its isomers, i.e., orthohydrogen and parahydrogen, over a wide range of temperatures, from the boiling point to the Boyle point. The obtained results are compared with those of the van der Waals Equation of state, Berthelot Equation of state, Tsonopoulos correlation, McGlashan & Potter correlation, Yuan Duan correlation, Van Ness & Abbott correlation, and McGlashancorrelation. The results of this work agree well with those of other correlations in the high temperature region.

 

Doi: 10.28991/HEF-2022-03-02-05

Full Text: PDF


Keywords


Hydrogen; Isomers; Law of Corresponding States; Orthohydrogen; Parahydrogen; Second Virial Coefficient.

References


Momirlan, M., & Veziroglu, T. N. (2005). The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. International Journal of Hydrogen Energy, 30(7), 795–802. doi:10.1016/j.ijhydene.2004.10.011.

Jain, I. P. (2009). Hydrogen the fuel for 21st century. International Journal of Hydrogen Energy, 34(17), 7368–7378. doi:10.1016/j.ijhydene.2009.05.093.

Ball, M., & Wietschel, M. (2009). The future of hydrogen–opportunities and challenges. International journal of hydrogen energy, 34(2), 615-627. doi:10.1016/j.ijhydene.2008.11.014.

Cecere, D., Giacomazzi, E., & Ingenito, A. (2014). A review on hydrogen industrial aerospace applications. International Journal of Hydrogen Energy, 39(20), 10731–10747. doi:10.1016/j.ijhydene.2014.04.126.

Okolie, J. A., Patra, B. R., Mukherjee, A., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2021). Futuristic applications of hydrogen in energy, biorefining, aerospace, pharmaceuticals and metallurgy. International Journal of Hydrogen Energy, 46(13), 8885–8905. doi:10.1016/j.ijhydene.2021.01.014.

Yue, M., Lambert, H., Pahon, E., Roche, R., Jemei, S., & Hissel, D. (2021). Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews, 146, 111180. doi:10.1016/j.rser.2021.111180.

Abohamzeh, E., Salehi, F., Sheikholeslami, M., Abbassi, R., & Khan, F. (2021). Review of hydrogen safety during storage, transmission, and applications processes. Journal of Loss Prevention in the Process Industries, 72, 104569. doi:10.1016/j.jlp.2021.104569.

Liu, W., Zuo, H., Wang, J., Xue, Q., Ren, B., & Yang, F. (2021). The production and application of hydrogen in steel industry. International Journal of Hydrogen Energy, 46(17), 10548–10569. doi:10.1016/j.ijhydene.2020.12.123.

Bahrami, J., Gavin, P., Bliesner, R., Ha, S., Pedrow, P., Mehrizi-Sani, A., & Leachman, J. (2014). Effect of orthohydrogen-parahydrogen composition on performance of a proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 39(27), 14955–14958. doi:10.1016/j.ijhydene.2014.07.014.

Valenti, G., MacChi, E., & Brioschi, S. (2012). The influence of the thermodynamic model of equilibrium-hydrogen on the simulation of its liquefaction. International Journal of Hydrogen Energy, 37(14), 10779–10788. doi:10.1016/j.ijhydene.2012.04.050.

Yanxing, Z., Maoqiong, G., Yuan, Z., Xueqiang, D., & Jun, S. (2019). Thermodynamics analysis of hydrogen storage based on compressed gaseous hydrogen, liquid hydrogen and cryo-compressed hydrogen. International Journal of Hydrogen Energy, 44(31), 16833–16840. doi:10.1016/j.ijhydene.2019.04.207.

Podgorny, A. N., & Pashkov, V. V. (1988). Peculiarities of thermodynamic behaviour of liquid hydrogen. International Journal of Hydrogen Energy, 13(4), 231–237. doi:10.1016/0360-3199(88)90090-0.

Sherwin, J. A. (2022). Scattering of slow twisted neutrons by ortho-and parahydrogen. Physics Letters A, 437, 128102. doi:10.1016/j.physleta.2022.128102.

Boeva, O., Antonov, A., & Zhavoronkova, K. (2021). Influence of the nature of IB group metals on catalytic activity in reactions of homomolecular hydrogen exchange on Cu, Ag, Au nanoparticles. Catalysis Communications, 148, 106173. doi:10.1016/j.catcom.2020.106173.

Balasubramanian, R., Gunavathi, K., Jegan, R., & Roobanguru, D. (2014). A Study on the generalization of equations of state for liquids and gases. Open Journal of Modern Physics, 2014(2), 34–40. doi:10.15764/mphy.2014.02004.

Wei, Y. S., & Sadus, R. J. (2000). Equations of state for the calculation of fluid-phase equilibria. AIChE Journal, 46(1), 169–196. doi:10.1002/aic.690460119.

Chatterjee, N. D. (1991). Equations of State for Fluids and Fluid Mixtures. In Applied Mineralogical Thermodynamics (pp. 55–83). doi:10.1007/978-3-662-02716-5_3.

Alexandrov, I., Gerasimov, A., & Grigor’ev, B. (2013). Generalized Fundamental Equation of State for the Normal Alkanes (C 5-C50). International Journal of Thermophysics, 34(10), 1865–1905. doi:10.1007/s10765-013-1512-1.

Balasubramanian, R. (2006). Superheating of liquid alkali metals. International Journal of Thermophysics, 27(5), 1494-1500. doi:10.1007/s10765-006-0098-2.

Balasubramanian, R. (2007). Correlations of attainable superheat of fluid alkali metals. Journal of Nuclear Materials, 366(1-2), 272-276. doi:10.1016/j.jnucmat.2006.12.072.

Balasubramanian, R. (2013). A correlation of maximum attainable superheat and acentric factor of alkali metals. Thermochimica Acta, 566, 233–237. doi:10.1016/j.tca.2013.05.043.

Roy, S. C. (2001). Superheated liquid and its place in radiation physics. Radiation Physics and Chemistry, 61(3–6), 271–281. doi:10.1016/S0969-806X(01)00250-X.

Sobko, A. A. (2017). Description of evaporation curve for liquid metals by the generalized Van-der-Waals-Berthelot equation. Part II. Journal of Physical Science and Application, 7(1), 29-34. doi:10.17265/2159-5348/2017.01.004.

Balasubramanian, R. (2019). Thermodynamic Limit of Superheat of Fluids by a Generalized Berthelot Equation of State. American Journal of Materials Science and Application. 7(3), 60-64.

Lundstrøm, C., Michelsen, M. L., Kontogeorgis, G. M., Pedersen, K. S., & Sørensen, H. (2006). Comparison of the SRK and CPA equations of state for physical properties of water and methanol. Fluid Phase Equilibria, 247(1-2), 149-157. doi:10.1016/j.fluid.2006.06.012.

Jugan, J., & Khadar, M. A. (2002). Acoustic non-linearity parameter B/A and related molecular properties of binary organic liquid mixtures. Journal of Molecular Liquids, 100(3), 217-227. doi:10.1016/S0167-7322(02)00043-0.

Ramasamy, B., Jaffar, K. A., & Arumugam, R. Enthalpy of Vaporization of fluid alkali metals at high temperatures. Open Science Journal of Modern Physics, 5(2), 24–31.

Khomkin, A. L., & Shumikhin, A. S. (2017). The thermodynamics and transport properties of transition metals in critical point. High Temperatures - High Pressures, arXiv preprint, 46(4–5), 367–380. doi:10.48550/arXiv.1606.09609.

Boschi-Filho, H., & Buthers, C. C. (1997). Second virial coefficient for real gases at high temperature. arXiv preprint, 1-30. doi:10.48550/arXiv.cond-mat/9701185

Sadus, R. J. (2002). The Dieterici alternative to the van der Waals approach for equations of state: Second virial coefficients. Physical Chemistry Chemical Physics, 4(6), 919–921. doi:10.1039/b108822j.

Sobko, A. A. (2008). Generalized van der Waals-Berthelot equation of state. Doklady Physics, 53(8), 416–419. doi:10.1134/S1028335808080028.

Sobko, A. A. (2014). Description of evaporation curve by the generalized Van-der-Waals-Berthelot equation. Part I. Journal of Physical Science and Application, 4(8), 524-530. doi:10.17265/2159-5348/2014.08.008.

Yousefi, F., & Amoozandeh, Z. (2016). Statistical mechanics and artificial intelligence to model the thermodynamic properties of pure and mixture of ionic liquids. Chinese Journal of Chemical Engineering, 24(12), 1761-1771. doi:10.1016/j.cjche.2016.05.003.

Meng, L., & Duan, Y. Y. (2005). Prediction of the second cross virial coefficients of nonpolar binary mixtures. Fluid phase equilibria, 238(2), 229-238. doi:10.1016/j.fluid.2005.10.007.

Barbarín-Castillo, J. M., Soto-Regalado, E., & Mclure, I. A. (2000). A test of the McGlashan and Potter correlation for second virial coefficients of mixtures containing a tetraethyl substance. Journal of Chemical Thermodynamics, 32(4), 567–569. doi:10.1006/jcht.1999.0619.

Sivakumar, M., & Balasubramanian, R. (2020). Determination of second virial coefficient of gold by a modified Berthelot equation of state. Journal of Human, Earth, and Future, 1(4), 175-180. doi:10.28991/HEF-2020-01-04-02.

Poling, B. E., Prausnitz, J. M., & O’connell, J. P. (2001). Properties of gases and liquids. McGraw-Hill Education, New York, United States.


Full Text: PDF

DOI: 10.28991/HEF-2022-03-02-05

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Balasubramanian R, Abishek A, Gobinath S, Jaivignesh K