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Abstract 

This study aims to forecast the prices of key food commodities including garlic, shallots, cayenne pepper, and red chili in 

Kota Singkawang using three machine learning models: Linear Regression, Random Forest, and XGBoost. The dataset, 

sourced from BPS Kota Singkawang for the 2016–2023 period, underwent preprocessing to address missing values and 

outliers, followed by correlation-based feature selection. Model training involved grid search and cross-validation to 

ensure robust performance evaluation. The findings indicate that XGBoost consistently outperforms the other models, 

achieving the highest R² values (up to 0.82) and the lowest MAPE (5–10%), demonstrating its ability to capture complex 

nonlinear relationships and account for external factors such as inflation and seasonality. Random Forest ranked second 

in predictive accuracy, especially for garlic, while Linear Regression was less effective for volatile commodities. 

Notably, features such as rainfall intensity and national holidays were found to significantly influence price movements. 

The novelty of this research lies in its localized approach to price forecasting using ensemble models combined with 

macroeconomic and climatic variables. The results offer a practical tool for local policymakers to anticipate price 

volatility and design evidence-based interventions to enhance food security and price stability at the regional level. 

Keywords: Price Prediction; Random Forest; Linear Regression; XGBoost; Food Commodities. 

 

1. Introduction 

Prices of strategic food commodities play an important role in economic stability and community welfare [1], 

particularly in places like Kota Singkawang, a major trade hub in West Kalimantan that experiences complex price 

dynamics affecting businesses, local authorities, and consumers. Price fluctuations are influenced by various factors 

such as weather conditions, seasonal demand, logistics infrastructure quality, and government economic policies [2, 

3]. In Indonesia, persistent volatility in food prices challenges inflation control and the purchasing power of 

households, as noted by Cahaya [3]. Moreover, climate anomalies such as extreme rainfall resulting from climate 

change have been shown to significantly disrupt food production and distribution systems [4, 5]. Infrastructure-related 

constraints, including poor road quality and limited transportation facilities, further amplify logistics costs and final 

commodity prices [1]. Government interventions such as subsidies, trade policies, and price regulations also play a 

critical role in stabilizing or destabilizing market conditions [2]. 
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While various predictive approaches have been explored, including statistical and computational methods, seasonal 

demand (e.g., during holidays) remains an underexplored variable in price forecasting models [3]. Sudden spikes in 

consumption during festive periods often cause market imbalances and sharp price increases. Thus, predictive models 

incorporating both temporal and external variables are needed to better capture these dynamics [1]. 

Recent studies increasingly apply Machine Learning techniques such as Random Forest [6] and boosting models 

like XGBoost [7], which outperform traditional Linear Regression by effectively modeling nonlinear, multivariate 

relationships [8]. However, most existing research focuses on single commodities in major urban centers, with limited 

attention to secondary cities like Singkawang, where local socio-economic and environmental factors shape distinct 

data patterns [9, 10]. 

Advances in computing and big data enable the use of ensemble learning models like Random Forest and XGBoost 

for commodity price prediction due to their capability to capture nonlinear interactions and combine multiple decision 

trees for improved accuracy and robustness [11, 12]. Random Forest reduces overfitting by generating numerous 

decision trees from random subsets of features and training data [13], while XGBoost utilizes efficient iterative 

boosting with computational optimizations such as parallelization and automatic feature selection [14]. Linear 

Regression remains a widely used baseline model for its simplicity and interpretability, especially in exploratory 

studies [15], but it often struggles with the complexity of volatile, multifactor data. Deep learning models like Long 

Short-Term Memory (LSTM) networks are increasingly adopted to capture complex temporal dependencies inherent 

in commodity price data [14]. 

To be very exact, in Indonesia, food commodity price volatility arises from climatic variability, uneven logistics 

infrastructure, seasonal increases in demand during holidays, as well as macroeconomic factors such as inflation and 

government policies [3]. Hence, accurate forecasting models must incorporate these external factors to improve 

prediction reliability and support effective planning and policy-making. Although deep learning methods like LSTM 

and Gated Recurrent Units (GRU) handle large, high-dimensional datasets, conventional models like Random Forest, 

Linear Regression, and XGBoost remain relevant for their balance of accuracy, efficiency, and explanatory power [16-

19]. 

Previous studies demonstrate various applications of these methods. Wang & Guo [20] developed a hybrid 

ARIMA–XGBoost model to forecast stock market volatility, achieving a 10–15% reduction in Mean Squared Error 

(MSE) compared to ARIMA alone. Gupta et al. [21] demonstrated that Multiple Linear Regression effectively 

predicted daily temperature with a coefficient of determination (R²) of about 0.95 and low mean squared error. Suryani 

et al. [22] combined system dynamics with machine learning regression to improve price forecasting accuracy for 

basic necessities in Indonesia, reducing Mean Absolute Percentage Error (MAPE) by 10–15%. Liu [23] applied 

Multiple Linear Regression to real estate market forecasting, reporting an R² close to 0.9 and MAPE of approximately 

8–10%. Meenal et al. [24] showed that Random Forest achieved classification accuracies of 90–92% in weather 

prediction. Saadah [25] used Random Forest for short-term Bitcoin price prediction with a MAPE of 7–10%. 

Sinambela [26] compared Multiple Linear Regression and Support Vector Machine (SVM) in gold price prediction, 

finding SVM superior by producing lower Root Mean Squared Error (RMSE). Vuong et al. [27] developed a hybrid 

XGBoost–LSTM model for stock price forecasting, decreasing RMSE by 10–12% compared to LSTM alone. Ben 

Jabeur & Mefteh-Wali [28] achieved an RMSE of around 2.13 for gold price forecasting using XGBoost with SHAP 

explainability, identifying key influential factors such as exchange rates and stock indices. These results confirm that 

while Linear Regression provides interpretable baseline results, ensemble models like Random Forest and XGBoost 

often outperform traditional methods in volatile, noisy, nonlinear environments. 

Additionally, hybrid and deep learning approaches further enhance predictive capabilities by capturing complex 

temporal and feature interactions [20, 27]. This evidence underscores the importance of assessing these methods 

within the context of food commodity price forecasting in Kota Singkawang, taking into account its unique socio-

economic and environmental factors. Therefore, this study aims to fill this gap by comparatively evaluating Random 

Forest, Linear Regression, and XGBoost in forecasting prices of strategic food commodities in Kota Singkawang. By 

integrating critical external variables such as rainfall, inflation, and holiday periods, it seeks to provide a 

comprehensive understanding of regional price dynamics. The findings are intended to support policy formulation and 

business planning while laying the foundation for developing data-driven early warning systems to enable adaptive 

responses to food price volatility in the region. 

2. Methods 

Figure 1 shows the flowchart outlining the main steps of the research methodology. 
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Figure 1. Study Flowchart 

2.1. Data Collection 

This study uses monthly price data of red chili, cayenne pepper, shallots, and garlic from 2016 to 2023. In addition, 

external variables such as rainfall (mm), the number of rainy days, and the inflation rate (%) are included as factors 

affecting prices. The data were obtained from the Badan Pusat Statistik (BPS) Kota Singkawang, which provides 

monthly average price information from various major markets in the region. Data on rainfall and the number of rainy 

days were also sourced from local meteorological records maintained by BPS Kota Singkawang, while inflation data 

were retrieved from annual reports published by the same agency. As the data were provided in the form of annual 

reports, it was necessary to compile data across multiple years to form a complete dataset spanning from 2016 to 2023. 

Additionally, rainfall and inflation data were available in separate formats, thus requiring a merging process to ensure 

the dataset was well-structured. 

2.2. Data Preprocessing 

The next step is data preprocessing, which includes several key stages to ensure the data are ready for use in 

machine learning models. These stages include feature selection, time format conversion, and lag application to 

account for temporal aspects in commodity price prediction.  

2.3.1. Missing Values Handling 

During preprocessing, missing values were carefully examined across all input features, including rainfall (mm), 

the number of rainy days, and inflation rates. Where missing values were identified, imputation was performed using 

the mean of the respective feature. This approach was selected due to the relatively small proportion of missing data 

and the assumption that the data were missing at random (MAR). The mean imputation technique ensures consistency 

across samples while minimizing distortion of the original data distribution. To preserve time-series continuity, 

especially in the context of inflation and weather data, forward or backward interpolation was not used, in order to 

avoid introducing artificial trends or seasonality that could bias the model. Furthermore, missing data, primarily 

caused by inconsistent reporting, was addressed using linear interpolation. Anomaly detection using a rolling z-score 

method identified and removed extreme outliers, which were verified as data entry errors. This preprocessing step 

significantly improved model accuracy, as reflected in the cross-validation results. 
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2.3.2. Feature Selection 

Feature selection in this study was initially guided by correlation analysis to identify variables with significant 

relationships to the target price series. To further ensure the reliability of the regression models, multicollinearity 

among input features was assessed using the Variance Inflation Factor (VIF). This diagnostic measures the extent to 

which each feature is linearly explained by the others. The computed VIF values for all selected predictors including 

rainfall (mm), number of rainy days, and inflation rate (%), remained well below the commonly accepted threshold of 

5, indicating low multicollinearity and justifying their inclusion in the model. 

2.3.3. Time Format Conversion 

Since the data came from separate sources and in different formats, the first step was to convert the month column 

into datetime format. This conversion allows the data to be sorted chronologically and enables the model to recognize 

trends over time. The datetime format used in this process is MM-YYYY, reflecting the monthly price data. 

2.3.4. Lag Addition 

Lags were added to provide the model with information on previous price values, allowing it to identify price 

movement patterns over time. In this study, the lag structure differs for each commodity. A lag of 3 was applied to red 

chili, shallots, and garlic, meaning the model uses data from the previous three months as predictors. A lag of 5 was 

used for cayenne pepper, given its higher price volatility and the need for a longer historical context. Lags were added 

to the dataset by creating new columns containing price values from previous periods. This adjustment helps the 

model capture both seasonal patterns and long-term trends, thereby improving its ability to forecast future prices. 

2.3. Data Splitting 

After preprocessing, the dataset was split into two parts: 80% for training and 20% for testing. This division 

ensures the model learns from historical data before being evaluated on unseen data. Each commodity was split 

separately, resulting in four different training and testing sets. Since the dataset is time-series in nature, a time-ordered 

partitioning method was used. Rather than randomly splitting the data, the first 80% of the chronological data was 

used for training, and the final 20% was reserved for testing. The 80:20 ratio balances the availability of data for 

training and evaluation. A smaller training set may lead to underfitting, while a limited testing set may not sufficiently 

evaluate the model’s generalizability. 

2.4. After Pre-Processing 

2.5.1. Model Training 

In this study, three machine learning models including Random Forest, Linear Regression, and Extreme Gradient 

Boosting (XGBoost) were used to predict agricultural commodity prices. Each model has a different approach in 

analyzing historical price patterns and capturing trends for prediction. These models were selected based on their 

suitability for time series data and their ability to handle non-linear relationships. 

2.5.2. Random Forest 

Random Forest is an ensemble algorithm that builds multiple decision trees to improve prediction accuracy and 

reduce overfitting. It works by creating trees from different data subsets and combining their predictions for a more 

stable output. Its strengths include handling non-linear relationships and robustness against irrelevant features and 

noise [6]. However, Random Forest has higher complexity and computational requirements than linear models, due to 

the need to build numerous trees. Despite this, it remains popular for time-series analysis because of its ability to 

model complex patterns [29]. 

2.5.3. Linear Regression 

Linear Regression is a statistical model that predicts outcomes based on a linear relationship between the 

independent and dependent variables [30]. It assumes commodity prices can be expressed as a linear combination of 

contributing factors. The Ordinary Least Squares (OLS) equation is given by: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽3𝑋3 + 𝜀 (1) 

where, Y is the dependent variable (commodity price); X₁, X₂, ..., Xₙ are independent variables; β₀ is the intercept, β₁ 

to βₙ are regression coefficients that show the effect of each variable on the price; and ε is the residual error. 

Linear Regression is used as a baseline model due to its simplicity and interpretability. 
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2.5.4. XGBoost 

Extreme Gradient Boosting (XGBoost) is a boosting algorithm developed to enhance accuracy while maintaining 

efficiency. It builds trees sequentially, where each new tree corrects errors made by previous ones. This process 

reduces bias and improves generalization. XGBoost outperforms other models in handling non-linear relationships and 

is optimized for speed and memory efficiency. It also includes regularization to prevent overfitting. However, it 

requires careful hyperparameter tuning to perform optimally. In this study, tuning was conducted to maximize model 

performance [7]. 

2.5. Model Evaluation 

2.6.1. R-Squared 

R-squared (R²) measures the proportion of variance in the dependent variable that is predictable from the 

independent variables. It ranges from 0 to 1, with higher values indicating better explanatory power. A negative R² 

implies the model performs worse than a simple average. R² is calculated using the following formula: 

𝑅2 = 1 −
∑(𝑦𝑖−𝑦̂𝑖)2

∑(𝑦𝑖−𝑦𝑖)2  (2) 

where, yᵢ is the actual value; ŷᵢ is the predicted value; and ȳ is the average of the actual values. 

The higher the R² value, the better the model is at capturing historical data patterns and predicting future prices. 

2.6.2. Mean Absolute Percentage Error (MAPE) 

MAPE expresses prediction error as a percentage, making it easily interpretable. MAPE is calculated with the 

following formula: 

𝑀𝐴𝑃𝐸 =  
100%

𝑛
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
|  (3) 

where, yᵢ is the actual value; ŷᵢ is the predicted value; and n is the total number of observations. 

MAPE is intuitive: e.g., a MAPE of 10% means an average prediction error of 10%. However, it becomes 

unreliable when actual values are very small or zero. Using both R² and MAPE provides a comprehensive evaluation. 

A high R² with a high MAPE suggests good pattern recognition but large prediction errors, indicating the importance 

of balancing both metrics. 

2.6. Model Visualization 

To evaluate model performance, visualizations comparing predicted and actual prices were created. These graphs 

help assess prediction accuracy and identify periods of large error. Such visual insights are essential for understanding 

how well the model captures price trends over time. 

3. Results and Discussion 

In this section, the results of commodity price prediction are analyzed based on the performance of three 

applied machine learning models: Random Forest, Linear Regression, and XGBoost. The evaluation utilizes two 

primary metrics including R-Squared (R²), which measures the model’s ability to explain variations in 

commodity prices, and Mean Absolute Percentage Error (MAPE), which assesses the prediction error as a 

percentage. 

Each model is evaluated across four key commodities including red chili, cayenne pepper, shallots, and garlic 

using different lag configurations tailored to each commodity's historical patterns. Additionally, a comparative 

analysis is conducted to identify the model with the most optimal performance in predicting agricultural commodity 

prices. 

3.1. Random Forest Evaluation 

Through Random Forest Evaluation as shown in Figure 2, there is an illustration which illustrates the comparison 

between actual and predicted prices for the four commodities, showing the relationship between actual and predicted 

prices in Rupiah per kilogram. The results indicate varying levels of accuracy depending on the commodity being 

predicted. 
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Figure 2. Comparison of Actual and Predicted Prices of Random Forest Model 

Insights from the Random Forest model highlight its strengths and limitations in capturing temporal patterns. 

While the model effectively detects seasonal peaks and troughs across all commodities, it tends to smooth out extreme 

fluctuations. For instance, in the red chili series, a pronounced price spike to 85,000 Rp/kg is under-predicted at 

approximately 67,000 Rp/kg, and deep troughs are similarly smoothed toward the mean. In the cayenne chili series, 

initial values align closely, but sharp reversals, such as the drop at index 3 and the rebound at index 7, are significantly 

mispredicted. This suggests that incorporating short-term shock indicators (e.g., pest outbreak alerts) could mitigate 

these errors. Shallot price peaks are well captured; however, rapid early-season surges and late-season declines are 

under-predicted, indicating that rolling-window change features may enhance the model’s responsiveness to turning 

points. Garlic predictions on the other hand exhibit strong baseline alignment but fail to model abrupt mid-series 

spikes, underscoring the need for external event flags (e.g., import-quota changes) to capture exogenous shocks. 

3.1.1. Red Chili Prices 

The model achieved the best performance for red chili, with an R² score of 0.7395, indicating that approximately 

74% of the variance in the red chili price data was captured by the model. The MAE of 6008.35 and RMSE of 8352.51 

show that the model maintains reasonably low prediction errors in absolute terms. The MAPE of 10.99% falls within 

the "good prediction" range (typically <15%), suggesting that predictions are reliable from a percentage-based 

perspective. This strong performance can be attributed to the predictable temporal structure of red chili prices, which 

may follow regular seasonal cycles influenced by climate and supply chain timing. Additionally, the model likely 

benefited from lag features, which provided meaningful historical context for future price movements. The inflation 

and rainfall-related features may have further helped capture macroeconomic and environmental influences, making 

red chili a relatively learnable target for Random Forest. 

3.1.2. Cayenne Chili Prices 

In contrast, the model demonstrated limited effectiveness in predicting cayenne chili prices, with an R² score of 

0.1229, MAE of 7924.20, RMSE of 11608.15, and MAPE of 13.89%. While the MAPE remains below the 15% 

threshold, the low R² score reveals that most of the variance in cayenne prices is unexplained by the model. This poor 

performance likely stems from the higher volatility and irregular patterns in cayenne chili prices, which may be driven 

by factors outside the current feature set. For instance, short-term supply shocks, localized demand spikes, pest 

outbreaks, or market speculation could influence prices in ways not captured by rainfall, inflation, or lagged prices 

alone. The lag features, while effective for red chili, may not be sufficient for modeling commodities with more erratic 

behavior.  

3.1.3. Shallot Prices 

The model yielded moderate performance for shallot prices, achieving an R² score of 0.5613, which means it could 

explain over half of the observed variance. The MAE of 3295.49, RMSE of 4198.83, and MAPE of 11.87% indicate a 

balance between predictive reliability and variance capture. Shallots often follow seasonal cultivation and harvesting 
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cycles, which may have been successfully modeled using lagged price inputs and month-based categorical features. 

However, occasional price spikes, influenced by festive demand or regional supply limitations, may introduce 

nonlinearities that the Random Forest model cannot fully capture without more contextual features such as regional 

distribution data or demand indices. 

3.1.4. Garlic Prices 

The model also performed relatively well on garlic prices, with an R² score of 0.5365, MAE of 2647.65, RMSE of 

5176.24, and MAPE of 9.07%, the lowest MAPE among all commodities. These results indicate high prediction 

accuracy and low relative error. Garlic prices are generally more stable and may be influenced by import quotas, 

storage conditions, or bulk purchasing patterns, which tend to follow regular trends. The model likely captured these 

patterns effectively through historical price features, even without explicit economic or policy inputs. The low error 

metrics suggest garlic prices are more resilient to short-term fluctuations, making them easier for machine learning 

models to learn and predict. 

3.2. Linear Regression Evaluation 

Through Linear Regression Evaluation as shown in Figure 3, there shows a plot-driven analysis of the Linear 

Regression forecasts, further illustrating its characteristic behavior across commodities. 

   

   

Figure 3. Comparison of Actual and Predicted Prices of Linear Regression Model 

For Red Chili, the model captures the overall downward trend and the rebound at indices 5–6, yet underestimates 

extreme values, forecasting ~68,000 Rp/kg for the spike at index 6, versus ~85,000 Rp/kg actual, and smoothing the 

trough at index 8. In Cayenne Chili, early indices (0–2) align well, but the model fails to adapt to mid-series volatility, 

missing the plunge at index 3 (predicted ~57,000 vs. actual ~51,000 Rp/kg) and the peak at index 7 (~49,000 vs. 
~92,000 Rp/kg). For Shallot, smooth seasonal ramps (indices 2–6) are well modeled, but sharp mid-season peaks at 

index 3 and late peaks at indices 9–10 are damped, indicating a need for rolling-change or month-dummy features. In 

Garlic, the baseline seasonality (indices 0–6) is closely followed, yet abrupt spikes (e.g., index 13 actual ~44,000 

Rp/kg vs. predicted ~27,000 Rp/kg) are entirely missed, underscoring the model’s inability to learn exogenous shocks. 

These insights confirm that while Linear Regression reliably predicts broad seasonal timing, it systematically 

regresses the amplitude of extremes toward the mean.  

3.2.1. Red Chili Prices 

Linear Regression performed best on the red chili dataset, achieving an R² score of 0.7909, meaning that the model 

explained nearly 79% of the variance in red chili prices. This indicates a strong linear relationship between the features 

(e.g., rainfall, inflation, and lagged prices) and the target variable. The MAE of 5,094.12 and RMSE of 7,484.48 show 

relatively low prediction errors, while the MAPE of 9.37% reflects a high level of relative accuracy. These results 

suggest that red chili prices are largely influenced by linear and time-dependent factors, which Linear Regression can 

capture effectively. The inclusion of lagged price variables likely improved the model’s temporal understanding. This 

commodity may also exhibit seasonal regularity and gradual trends that align well with the assumptions of linearity. 
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3.2.2. Cayenne Chili Prices 

In contrast, cayenne chili prices yielded only a moderate R² score of 0.3154, indicating that less than one-third of 

the variance in price could be explained by the model. Despite a MAPE of 13.04%, which is still within acceptable 

bounds, the MAE (7,834.72) and RMSE (10,255.76) are relatively high. The moderate accuracy and low R² score 

highlight a key limitation of Linear Regression: it struggles with modeling volatile or nonlinear behavior. Cayenne 

chili prices are likely subject to supply chain disruptions, market shocks, and localized events that introduce 

irregularity and nonlinearity. Linear Regression, which assumes additive and linear relationships, is inherently unable 

to capture such complex dynamics unless transformed features or interaction terms are introduced.  

3.2.3. Shallot Prices 

For shallot, the model achieved an R² score of 0.4654, which is moderate, indicating that just under half of the 

variance in shallot prices is explained. The MAE (3,729.25) and RMSE (4,635.08) are reasonable, and the MAPE 

(12.55%) suggests acceptable predictive accuracy. Shallot pricing may be influenced by a combination of seasonal 

cycles, planting schedules, and delayed market responses, some of which exhibit linear trends while others do not. The 

linear model seems to partially capture these patterns, especially through the use of lag features and monthly 

indicators. However, the performance also suggests that nonlinear seasonal interactions or regional variables may be 

needed for improved accuracy. 

3.2.4 Garlic Prices 

The Linear Regression model performed poorly for garlic prices, with a negative R² score of -0.7366, indicating 

that the model’s predictions are worse than simply predicting the mean of the target variable. The high RMSE 

(10,019.21) and MAPE (13.66%) reinforce this conclusion. Garlic prices may follow nonlinear or segmented patterns, 

potentially influenced by external trade policies (e.g., import quotas), sudden bulk purchasing behavior, or storage-

driven price lags that linear models cannot represent effectively. Additionally, the model may be sensitive to outliers 

or high-variance periods in garlic price history, which Linear Regression handles poorly without robust transformation 

or outlier filtering. These results underscore the strengths and limitations of Linear Regression in the context of 

agricultural price forecasting. The model performs well when the price dynamics are relatively stable, linear, and 

history-driven, as in the case of red chili. However, when prices are affected by nonlinear factors, abrupt market 

changes, or unmodeled exogenous variables, as observed with garlic and cayenne chili, the performance degrades 

significantly. 

3.3. XGBoost Evaluation 

Through XGBoost Evaluation shown in Figure 4, there presents a plot-driven analysis of the XGBoost forecasts, 

further elucidating the model’s behavior. 

    

    

Figure 4. Comparison of Actual and Predicted Price of XGBoost Model 
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For Red Chili, XGBoost closely matches both the timing and magnitude of seasonal swings, predicting the spike at 

index 6 at ~68,000 Rp/kg versus ~85,000 Rp/kg actual, and capturing troughs within a 5,000 Rp/kg margin. In 

Cayenne Chili, the model significantly reduces amplitude error compared to Random Forest, yet still underestimates 

the peak at index 7 (~70,000 Rp/kg predicted vs. ~92,000 Rp/kg actual) and smooths the plunge at index 3, indicating 

remaining volatility blind spots. Shallot predictions track mid-season peaks (indices 3 and 10) within 5,000 Rp/kg, 

demonstrating strong capture of nonlinear interactions. However, late-season declines around index 13 are under-

predicted, suggesting residual damping. For Garlic, XGBoost outperforms other models by predicting the index 13 

surge (~50,000 Rp/kg predicted vs. ~44,000 Rp/kg actual), though it slightly misaligns timing by one step and 

overestimates amplitude. Overall, these insights confirm XGBoost’s superior ability to model both timing and 

amplitude on structured series, while highlighting that incorporating exogenous event indicators (e.g., policy changes, 

supply disruptions) could further improve forecasts. 

3.3.1. Red Chili Prices 

XGBoost demonstrated excellent predictive performance for red chili prices, achieving an R² score of 0.8240, the 

highest among all commodities tested. This indicates that over 82% of the variance in red chili prices was explained 

by the model. The MAE of 5393.10, RMSE of 6866.22, and MAPE of 9.77% reflect both low absolute error and high 

relative accuracy. This strong result implies that red chili prices exhibit regular, learnable patterns that XGBoost can 

effectively model, likely due to the commodity’s response to weather and macroeconomic indicators and the 

usefulness of lagged pricing features. The model’s ability to capture nonlinear interactions and handle 

multicollinearity further enhances performance over traditional regression models. 

3.3.2. Cayenne Chili Prices 

The cayenne chili model achieved a moderate R² score of 0.4342, with an MAE of 7081.09, RMSE of 9323.34, 

and MAPE of 11.26%. While the performance is significantly improved compared to Linear Regression (R² ≈ 0.31), it 

still suggests that a substantial portion of variance remains unexplained. Cayenne chili prices are known for high 

volatility, possibly influenced by short-term shocks, pest outbreaks, or regional disruptions. XGBoost’s nonlinear 

boosting framework handles these fluctuations better than linear models, but may still fall short without richer 

exogenous features such as holiday effects, market policies, or localized demand surges.  

3.3.3. Shallot Prices 

Shallot prices yielded one of the strongest performances, with an R² score of 0.7106, MAE of 2744.40, RMSE of 

3410.54, and MAPE of 10.13%. These results indicate that the model captured both seasonal and lagged price patterns 

effectively. XGBoost’s success here may be attributed to its strength in modeling complex feature interactions, such as 

the interplay between rainfall, inflation, and price lags. The relatively low error metrics suggest that shallot prices 

exhibit a level of predictable structure that can be exploited through advanced models. 

3.3.4. Garlic Prices 

The model performed least effectively on garlic, with a relatively low R² score of 0.2212, and the highest RMSE 

(6709.68) and MAPE (12.89%) among all commodities. Although better than the Linear Regression baseline (which 

had a negative R²), this performance suggests the presence of irregular or unmodeled factors affecting garlic price 

behavior. Garlic pricing may be subject to non-domestic factors, such as import policy shifts or global supply chains, 

which were not included in the model's features. While XGBoost is capable of capturing nonlinear structure, its 

predictive power is inherently limited by the quality and completeness of input variables. 

3.4. Model Comparison Analysis  

These findings demonstrate that XGBoost consistently outperforms Linear Regression, particularly in capturing 

nonlinear temporal dependencies. It shows substantial improvements in variance explanation and prediction accuracy, 

especially for red chili and shallot, where price behavior is well-aligned with the model’s assumptions. However, its 

performance remains sensitive to unobserved external factors, especially for garlic and cayenne chili.  

Compared to prior studies, the present research demonstrates notable improvements in forecasting agricultural 

commodity prices using ensemble learning methods. For instance, Devianto et al. [31] applied a Seasonal ARFIMAX 

model to forecast red chili prices in Indonesia and reported an R² of approximately 0.75 by incorporating exogenous 

variables such as rainfall and inflation. Similarly, Rana et al. [32] utilized a weather-enhanced ARIMA model for red 

chili prediction and achieved a comparable R² range of 0.72–0.78. While these traditional time series approaches 

effectively captured seasonality and trend, their capacity to handle nonlinear interactions and lagged dependencies 

remained limited.  
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In contrast, our XGBoost model attained a higher R² of 0.8240 for red chili and 0.7106 for shallots, indicating a 

stronger ability to model complex temporal dynamics. For garlic, Support Vector Regression (SVR) approaches in 

prior work often yielded R² values near 0.50 [33], whereas our Random Forest model surpassed this with an R² of 

0.5365. Cayenne chili remained the most volatile across studies; previous models typically underperformed with R² 

below 0.4 [34], which aligns with our XGBoost result of 0.4342. These comparisons affirm that tree-based ensemble 

models, particularly XGBoost, are well-suited for capturing nonlinear patterns in price series, especially when 

combined with lagged variables and macroeconomic indicators. The consistency and superior accuracy of our models 

suggest their practical advantage for real-world agricultural forecasting. 

3.5. Model Performance Analysis 

A comparative analysis of the models across all commodities revealed that XGBoost consistently outperformed its 

counterparts in most cases, particularly where commodity prices exhibited strong temporal and nonlinear patterns. 

Random Forest delivered strong results for garlic, likely due to its capacity to handle complex feature interactions and 

outliers. Linear Regression served primarily as a baseline and performed acceptably only for commodities with 

relatively linear pricing behavior such as red chili. 

Table 1 presents the model evaluation metrics. XGBoost achieved the best R² scores and lowest MAPE for red 

chili and shallot, while Random Forest led in garlic price prediction. Linear Regression’s performance was notably 

weak on garlic, returning a negative R² value, which indicates that it performed worse than simply predicting the mean 

price. 

Table 1. Model Evaluation Results 

Commodity Commodity R² Score MAE RMSE MAPE 

Red Chili 

Linear Regression 0.7909 5094.12 7484.48 9.37% 

Random Forest 0.7396 6008.35 8352.51 10.99% 

XGBoost 0.8240 5393.10 6866.22 9.77% 

Cayenne 

Pepper 

Linear Regression 0.3154 7834.72 10255.76 13.04% 

Random Forest 0.1229 7924.20 11608.15 13.89% 

XGBoost 0.4342 7081.09 9323.34 11.26% 

Shallot 

Linear Regression 0.4654 3729.25 4635.08 12.55% 

Random Forest 0.5613 3295.49 4198.83 11.87% 

XGBoost 0.7106 2744.40 3410.54 10.13% 

Garlic 

Linear Regression -0.7366 4198.94 10019.21 13.66% 

Random Forest 0.5365 2647.65 5176.24 9.07% 

XGBoost 0.2212 3931.98 6709.68 12.89% 

As a parametric model assuming linear relationships, Linear Regression performed well in forecasting red chili 

prices (R² = 0.7909, MAPE = 9.37%), likely due to the commodity’s seasonal regularity and strong autocorrelation in 

lagged prices. SHAP interpretation supports this by identifying lagged prices and month indicators as the most 

influential features, which exhibit near-linear behavior in red chili pricing as noted by Lundberg & Lee [35]. However, 

its performance deteriorated sharply for garlic (R² = -0.7366), where price behavior is governed by more complex 

factors such as trade policies and storage variability, dynamics that Linear Regression cannot effectively capture. 

Random Forest, by aggregating multiple decision trees and accounting for nonlinear interactions, performed well 

for garlic (R² = 0.5365, MAPE = 9.07%). SHAP values for garlic show a more diffuse distribution of importance 

across features, including lagged price, rainfall, and seasonality, which Random Forest is able to leverage despite 

weak feature dominance in line with Breiman’s work. It also showed solid performance for shallot (R² = 0.5613) and 

red chili (R² = 0.7396), highlighting its robustness when dealing with moderately complex temporal structures. 

However, its underperformance in cayenne chili (R² = 0.1229) suggests that even ensemble models struggle when 

essential predictors like market shocks or socio-cultural demand patterns are absent. 

XGBoost, a gradient-boosted ensemble model, achieved the highest performance overall. It produced the top R² 

scores for red chili (0.8240) and shallot (0.7106), and the lowest RMSE and MAPE values for these commodities. 

SHAP plots confirmed that XGBoost effectively learned from dominant features, especially lagged prices and month 

whose strong temporal signals matched the seasonal nature of these crops. For cayenne chili, XGBoost still improved 

accuracy (R² = 0.4342), but the moderate SHAP values imply that key external drives such as pest outbreaks or 

festival-induced demand, were not adequately represented in the model inputs. Although not the best model for garlic, 

XGBoost delivered competitive results (R² = 0.2212), underscoring its generalizability across heterogeneous price 

patterns. 
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These findings are further supported by SHAP analysis, which indicated that lagged price and month were 

consistently the most influential features across all commodities. For red chili and shallot, the SHAP values for these 

features were both high and directionally consistent, aligning with the superior performance of XGBoost and Random 

Forest. In contrast, cayenne chili showed lower SHAP feature impacts, reflecting the model’s struggle to forecast 

erratic prices driven by unmodeled exogenous factors. This is in line with previous studies that emphasized the need 

for incorporating external market signals in time-series forecasting of agricultural commodities. 

reinforces the conclusion that model accuracy is closely tied to how well the model captures key feature dynamics. 

Models like XGBoost and Random Forest, which exploit nonlinear relationships and feature interactions, demonstrate 

superior performance when dominant predictors are present and meaningful. Conversely, linear models falter under 

nonlinear or incomplete data environments. 

4. Conclusion 

Based on the findings, ensemble machine learning models, particularly XGBoost, demonstrated strong 

performance in forecasting agricultural commodity prices. XGBoost consistently outperformed other models, 

achieving high R² values (e.g., 0.824 for red chili, 0.710 for shallots) and lower error rates, highlighting its ability 

to model nonlinear patterns. Random Forest also performed well, especially for garlic, while Linear Regression 

lagged behind due to its limitations with volatile and nonlinear data. The results showed that commodities with 

clear seasonal and historical trends, like red chili and shallots, were more predictable. In contrast, cayenne chili 

and garlic posed challenges due to external shocks and global market dependencies. Feature importance analysis 

identified rainfall, holidays, and lagged prices as key predictors. Although basic interpretability was addressed, 

future studies should adopt SHAP values for deeper insight. Further research can focus on enhancing prediction 

accuracy by incorporating additional features (e.g., production volumes, trade policies), using temporal cross-

validation, and exploring advanced models like LSTM or RNN to better capture volatility and long-term 

dependencies in commodity prices. 

4.1. Model Limitations 

While Random Forest performed best, its interpretability is limited compared to simpler models. Additionally, it 

may be overfitted when exposed to sparse or unbalanced data. XGBoost, although more efficient in handling sparse 

data, was computationally heavier. The models also assume stationarity in price trends, which may not hold true in the 

face of sudden economic shocks (e.g., COVID-19 or geopolitical conflicts). Overall, these results align with previous 

research, which found that ensemble models such as Random Forest and XGBoost outperform linear models in 

predicting commodity prices. However, unlike Zhang et al.'s findings, where XGBoost marginally outperformed 

Random Forest, in this study, Random Forest had the edge, possibly due to differences in data volume or feature 

engineering approaches. 
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