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Abstract 

Attempts have been made by many authors to develop an inflow performance relationship model suitable for solution gas 

drive reservoirs. However, they have not been as successful as most of the developed models suffer from certain degrees 

of inaccuracies, and this necessitates the need for an improved model as the economic analysis of an oilfield greatly 

depends on the ability to accurately forecast future production. Therefore, the objective of this research is to develop an 

improved inflow performance relationship model for solution gas reservoirs by employing a purely analytical approach 

and to compare the performance of the developed model with that of the existing IPR models (Vogel, Wiggins, 

Fetkovich, and Klins and Majher). A series expansion of the pseudo-steady state solution of the equation that governs 

fluid flow in reservoirs of radial geometry is obtained using Taylor's method, and the infinite series obtained is truncated 

after a reasonable number of terms to ensure a high degree of accuracy while also avoiding computational complexity. 

Moreover, the unknown coefficients in the truncated series were determined using the available reservoir fluid data. 

Finally, statistical analysis was carried out to determine the degree of deviation of the new and existing IPR models from 

the actual IPR. This analysis shows that the improved model (with an average coefficient of determination of 0.97) 

outperforms the existing IPR models to which it was compared. Therefore, the improved model is recommended for 

situations where extreme accuracy is of the utmost importance. 

Keywords: Inflow Performance Relationship; Solution Gas Drive Reservoirs; Pseudosteady-state Flow. 

 

1. Introduction 

The Inflow Performance Relationship, or IPR, is defined as the working relationship between the production rate, 

reservoir pressure, and the bottom-hole flowing pressure. In 1954, Gilbert first proposed a well analysis using this 

relationship. IPR is operational in the pressure range between the average reservoir pressure and atmospheric pressure. 

The flow rate corresponding to the atmospheric pressure is defined as the absolute open flow potential of the well, 

whereas the flow rate at the average reservoir pressure bottom-hole is always zero [1].  

Inflow Performance Relationships (IPRs) are pressure-rate relationships that are used to predict the performance of 

oil and gas wells. Vogel was one of the first people to propose an IPR for predicting the performance of oil wells [2]. 

This IPR was instantaneously accepted in the industry because it is easy to apply and yields reasonable results. His 

work is centred around Weller’s approximations, which assume that the tank-oil de-saturation rate is the same at every 

point in the reservoir at any given time. The Vogel relationship assumes the following equation:  
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𝑞0

𝑞0𝑚𝑎𝑥

= 1 − 0.2 (
𝑃𝑤𝑓

𝑃𝑅

) − 0.8 (
𝑃𝑤𝑓

𝑃𝑅

)
2

 

where 𝑞0is the producing rate of oil corresponding to a particular flowing bottom-hole pressure 𝑃𝑤𝑓. ‘𝑃𝑅’ is an 

unchanged reservoir pressure and 𝑞0, max is the production rate when the flowing bottom-hole pressure is equal to 

zero. 

For wells whose pressure is below bubble point pressure, the following mathematical relationship was used by 

Fetkovich [3]: 

𝑞0 =  𝐶(𝑃𝑅
2 −  𝑃𝑤𝑓

2)
𝑛

 

where 𝑃𝑅 is the reservoir pressure at the time of discovery (before production starts), C and n are constants determined 

by empirical techniques. 

 
Figure 1. Comparing the straight line IPR predicted by Darcy’s law with the observed actual relationship 

Furthermore, other authors such as Klins & Majcher (1992), Wiggins (1992), and Sukarno & Tobing (1995) [4-6] 

also attempted to develop an IPR model for solution gas drive reservoirs by employing empirical method [7, 8]. In 

addition, Wiggins et al. (1996), and Archer et al. (2003) [9, 10] carried out research works to improve the Vogel’s IPR 

model by employing a semi-analytical approach. However, the focus of this research is on how a purely analytical 

approach can be employed to develop an IPR model that outperforms other existing models [11-14].  

2. Research Methodology 

The flow chart below shows the processes involved in developing the improved inflow performance relationship 

model presented in this paper. 

 
Figure 2. Flowchart of the research methodology 
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2.1. Theoretical Development 

If we consider a flow element of thickness, ‘dr’ and positioned at a radius ‘r’ from the centre of the well. Applying 

the principle of conservation of mass to the porous element, we have the following expressions;  

[

𝑀𝑎𝑠𝑠 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 
𝑉𝑜𝑙𝑢𝑚𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑑𝑢𝑟𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(∆𝑡) 
] − [

𝑀𝑎𝑠𝑠 𝑙𝑒𝑎𝑣𝑖𝑛𝑔 
𝑉𝑜𝑙𝑢𝑚𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑑𝑢𝑟𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(∆𝑡)
] = [

𝑟𝑎𝑡𝑒 𝑜𝑓 𝑚𝑎𝑠𝑠
𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑑𝑢𝑟𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (∆𝑡)
] (1) 

The mass influx into the porous element during a time interval ∆𝑡 is expressed as follows: 

(𝑚𝑎𝑠𝑠)𝑚 = ∆𝑡(𝐴𝑉𝜌)𝑟+𝑑𝑟 (2) 

where; 𝑉= velocity of flowing fluid, 𝜌= Fluid density, 𝐴= Are, 𝑡=Time. 

The inlet area of the element can be expressed as; 

𝐴𝑟 + 𝑑𝑟 = 2𝜋∆𝑡(𝑟 + 𝑑𝑟)ℎ(𝑣𝜌)𝑟+𝑑𝑟 (3) 

The mass flowing out of the porous element is given by; 

(𝑀𝑎𝑠𝑠)𝑜𝑢𝑡 = 2𝜋∆𝑡𝑟ℎ (𝑣𝜌)𝑟 (4) 

The volume V of the porous element is expressed as; 

𝑉 =  𝜋𝑟2ℎ (5) 

𝑑𝑣

𝑑𝑟
= 2𝜋ℎ         or;  (6) 

𝑑𝑣 = (2𝜋𝑟ℎ)𝑑𝑟 (7) 

Total mass accumulation during ∆𝑡 𝑖𝑠 𝑑𝑉[(𝜃𝜌)𝑡+∆𝑡 − (𝜃𝜌)𝑡] 

Substituting an expression for dv, we have the total mass accumulation as;  

(2𝜋𝑟ℎ)𝑑𝑟[(𝜃𝜌)𝑡+∆𝑡 − (𝜃𝜌)𝑡] (8) 

Further substitutions yield the following expression; 

2𝜋ℎ(𝑟 + 𝑑𝑟)∆𝑡(𝜃𝜌)𝑟+𝑑𝑟 − 2𝜋ℎ𝑟∆𝑡(𝜃𝜌)𝑟 = (2𝜋𝑟ℎ)𝑑𝑟((𝐶𝜃𝜌)𝑡+∆𝑡 − (𝜃𝜌)𝑡) (9) 

Dividing Equation 9 by (2𝜋𝑟ℎ)𝑑𝑟 and simplifying gives: 

1

(𝑟)𝑑𝑟
[𝐶𝑟 + 𝑑𝑟(𝑣𝜌)𝑟+𝑑𝑟 − 𝑟(𝑣𝜌)𝑟] =

1

∆𝑡
[(𝜃𝜌)𝑡+∆𝑡 − (𝜃𝜌)𝑡] (10) 

or;  

1

𝑟

𝜕

𝜕𝑟
[𝑟(𝑣𝜌)] =

𝜕

𝜕𝑡
(𝜃𝜌) (11) 

The Equation 11 above is known as continuity equation and expresses the conservation of mass principle in radial 

geometry. The transport equation, which is the Darcy’s law is expressed as follows; 

𝑉 = (0.001127)
𝐾

𝜇

𝜕𝑝

𝜕𝑟
 (12) 

or;  

𝑉 = (0.006328)
𝐾

𝜇

𝜕𝑝

𝜕𝑟
 (13) 

Combining Equations 11 and 13 results in; 



Journal of Human, Earth, and Future         Vol. 2, No. 2, June, 2021 

128 

0.006328

𝑟

𝜕

𝜕𝑟
[
𝐾

𝜇
(𝜌𝑟)

𝜕𝑝

𝜕𝑟
] =

𝜕

𝜕𝑟
(𝜃𝜌) (14) 

By expanding the RHS we have; 

𝜕

𝜕𝑡
(𝜃𝜌) = 𝜃

𝜕𝜌

𝜕𝑡
+ 𝜌

𝜕𝜃

𝜕𝑡
 (15) 

The relationship between porosity and formation compressibility is given by the equation below; 

𝐶𝑓 =
1

𝜃

𝜕𝜃

𝜕𝑝
 (16) 

𝜕𝜃

𝜕𝑡
=

𝜕𝜃

𝜕𝑝

𝜕𝑝

𝜕𝑡
 (17) 

Substituting Equation 16 into this equation, we have the equation below; 

𝜕𝜃

𝜕𝑡
= 𝜃𝐶𝑓

𝜕𝑝

𝜕𝑡
 (18) 

Finally, further substitutions and simplifications gives: 

[
0.006328

𝑟
]

𝜕

𝜕𝑟
(

𝐾

𝜇
(𝑟𝜌)

𝜕𝑝

𝜕𝑟
) = 𝜌𝜃𝐶𝑓

𝜕𝑝

𝜕𝑡
+ 𝜃 (

𝜕𝑝

𝜕𝑡
) (19a) 

Equation 19 is the partial differential equation (PDE) that governs laminar flow of incompressible fluids in porous 

media. Modifications are required for compressible and slightly compressible fluids. 

[
0.006328

𝑟
𝐾]

𝜕

𝜕𝑟
(𝑟𝜌

𝜕𝑝

𝜕𝑟
) = 𝜌𝜃𝐶𝑓

𝜕𝑝

𝜕𝑡
+ 𝜃 (

𝜕𝜌

𝜕𝑡
) (19b) 

0.006328

𝑟
(

𝐾

𝜇
) [

𝜌

𝑟

𝜕𝑃

𝜕𝑟
+ 𝜌

𝜕2𝑃

𝜕𝑟2
+

𝜕𝑃

𝜕𝑟
(

𝜕𝜌

𝜕𝑟
)] = 𝜌𝜃𝐶𝑓 [

𝜕𝑃

𝜕𝑡
] + 𝜃 (

𝜕𝜌

𝜕𝑡
) (20) 

Further simplification gives; 

0.006328

𝑟
(

𝐾

𝜇
) [

𝜌

𝑟

𝜕𝑃

𝜕𝑟
+ 𝜌

𝜕2𝑃

𝜕𝑟2
+ (

𝜕𝑃

𝜕𝑟
)

2

(
1

𝜌

𝜕𝜌

𝜕𝑃
)] = 𝜌𝜃𝐶𝑓 [

𝜕𝑃

𝜕𝑡
] + 𝜃 (

𝜕𝑃

𝜕𝑡
) (

𝜕𝜌

𝜕𝑃
) (21) 

By dividing through by the fluid’s density, we have; 

0.006328

𝑟
(

𝐾

𝜇
) [

1

𝑟

𝜕𝑃

𝜕𝑟
+

𝜕2𝑃

𝜕𝑟2
+ (

𝜕𝑃

𝜕𝑟
)

2

(
1

𝜌

𝜕𝜌

𝜕𝑃
)] = 𝜃𝐶𝑓 [

𝜕𝑃

𝜕𝑡
] + 𝜃 (

𝜕𝑃

𝜕𝑡
) (

1

𝜌

𝜕𝜌

𝜕𝑃
) (22) 

𝐶 =
1

𝜌

𝜕𝜌

𝜕𝑃
 (23) 

By combining Equations 22 and 23, we have; 

0.006328 (
𝐾

𝜇
) [

𝜕2𝑃

𝜕𝑟2
+

1

𝑟

𝜕𝑃

𝜕𝑟
+ 𝐶 (

𝜕𝑃

𝜕𝑟
)

2

] = 𝜃𝐶𝑓 [
𝜕𝑃

𝜕𝑡
] + 𝜃𝐶 (

𝜕𝑃

𝜕𝑡
) (24) 

The term 𝐶 [
𝜕𝑃

𝜕𝑟
]

2

is regarded very small and is ignored: 

0.006328 (
𝐾

𝜇
) [

𝜕2𝑃

𝜕𝑟2
+

1

𝑟

𝜕𝑃

𝜕𝑟
] = 𝜃(𝐶𝑓 + 𝐶) [

𝜕𝑃

𝜕𝑡
] (25) 

Total compressibility, Ct, is defined as: 
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𝐶𝑡 = 𝐶 + 𝐶𝑓 (26) 

Finally, combining Equations 19b and 25 gives; 

𝜕2𝑃

𝜕𝑟2
+

1

𝑟

𝜕𝑃

𝜕𝑟
=

𝜃𝜇𝐶𝑓

0.006328𝐾

𝜕𝑃

𝜕𝑡
 (27) 

Equation 27 is known as the diffusivity equation. When time is changed from days to hours, it takes the following 

form; 

𝜕2𝑃

𝜕𝑟2
+

1

𝑟

𝜕𝑃

𝜕𝑟
=

𝜃𝜇𝐶𝑡

0.000264𝐾

𝜕𝑃

𝜕𝑡
 (28) 

𝜂 =
0.000264𝐾

𝜃𝜇𝐶𝑡
 

By making the above substitution, Equation 28 can be written more conveniently as follows: 

𝜕2𝑃

𝜕𝑟2
+

1

𝑟

𝜕𝑃

𝜕𝑟
=

1

𝜂

𝜕𝑃

𝜕𝑡
 (29) 

For Pseudo-steady state flow, pressure changes with time at a constant rate; 

(
𝜕𝑃

𝜕𝑡
) = constant (30) 

𝜕𝑃

𝜕𝑡
=

−0.23396𝑞

𝐶𝑡𝜋𝑟𝑒
2ℎ𝜃

 (31) 

𝜕2𝑃

𝜕𝑟2
+

1

𝑟

𝜕𝑃

𝜕𝑟
=

𝜃𝜇𝐶𝑓

0.006328𝐾

0.23396𝑞

𝐶𝑡𝐴ℎ𝜃
 (32) 

OR 

𝜕2𝑃

𝜕𝑟2
+

1

𝑟

𝜕𝑃

𝜕𝑟
=

−887.22𝑞𝜇

𝐴ℎ𝐾
 (32b) 

Equation 32b can be expressed as: 

1

𝑟

𝜕

𝜕𝑟
(

𝑟𝜕𝑃

𝜕𝑟
) =

−887.22𝑞𝜇

(𝜋𝑟𝑒)ℎ𝑘
 (33) 

Integrating equation 33 gives: 

𝑟𝜕𝑃

𝜕𝑟
=

−887.22𝑞𝜇

(𝜋𝑟𝑒
2)ℎ𝑘

𝑟2

2
+ 𝐶1 (34) 

where 𝐶1, the constant of the integration can be evaluated by imposing the outer no-flow boundary condition 

(𝑖. 𝑒. (𝜕𝑃/𝜕𝑟)𝑟𝑒
= 0) on the above relation to give: 

𝐶1 =
141.2𝑞𝜇

𝜋ℎ𝑘
 (35) 

Combining Equations 34 and 35 gives: 

𝜕𝑃
𝜕𝑟⁄ =

141.2𝑞𝜇

ℎ𝑘
(

1

𝑟
−

1

𝑟𝑒
2

) (36) 

Integrating once again: 
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∫ 𝑑𝑝
𝑃1

𝑃𝑤𝑓

=
141.2𝑞𝜇

ℎ𝑘
∫ (

1

𝑟
−

1

𝑟𝑒
2

) 𝑑𝑟
𝑟𝑒

𝑟𝑤

 (37) 

By integrating the above expression and by assuming that (
𝑟𝑤

2

𝑟𝑒
2 ) is negligible, we have; 

(𝑃1 − 𝑃𝑤𝑓) =
141.2𝑞𝜇

ℎ𝑘
(ln (

𝑟𝑒

𝑟𝑤

) −
1

2
) (38) 

Solving for rate in the above equation from gives: 

𝑄 =  
0.00708𝑘ℎ(𝑃𝑟 − 𝑃𝑤𝑓)

𝜇𝛽 (ln (
𝑟𝑒

𝑟𝑤
) − 0.5)

 (39) 

The volumetric average reservoir pressure P1 is usually used in calculating the liquid flow rate under the Pseudo-

steady state flowing condition. Introducing P, into Equation 39 gives; 

𝑄 =  
0.00708𝑘ℎ(𝑃𝑟 − 𝑃𝑤𝑓)

𝜇𝛽 (ln (
𝑟𝑒

𝑟𝑤
) − 0.75)

 (40) 

Introducing skin effect into the equation, the equation yields: 

𝑄 =
0.00708𝑘ℎ(𝑃𝑟 − 𝑃𝑤𝑓)

𝜇0𝛽0 (ln (
𝑟𝑒

𝑟𝑤
) − 0.75 + 𝑠)

 (41) 

∆𝑃 = 𝑃𝑟 − 𝑃 

∆𝑃 = 𝑓(𝑃) 

𝑑(∆𝑃)

𝑃
= 0 − 1 

𝑑(∆𝑃)

𝑃
= −1 

(42) 

𝑑(∆𝑃) = −𝑑𝑃 (43) 

𝐾0 = 𝐾𝐾𝑟0
 (44) 

Taking −
0.00708𝑘ℎ(𝑃𝑟−𝑃𝑤𝑓)

(ln(
𝑟𝑒
𝑟𝑤

)−3/4+𝑠)
as C; 

𝑞 = 𝐶 ∫ (
𝐾𝑟0

𝜇0𝛽0

)
𝑃2

𝑃1

𝑑𝑝 (45) 

𝑞 = 𝐶 ∫
𝐾𝑟0

𝜇0𝛽0

𝑃𝑟−𝑃

0

𝑑𝑝 (46) 

𝑞 = 𝐶 ∫
𝐾𝑟0

𝜇0𝛽0

∆𝑃

0

𝑑𝑝 (47) 

𝑑𝑝 = −𝑑(∆𝑃) 

𝑞 = 𝐶 ∫
𝐾𝑟0

𝜇0𝛽0

∆𝑃

0

𝑑(∆𝑃) (48) 

Normalizing the equations by dividing through by 𝑃𝑟; 
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𝑞 = 𝐶𝑃𝑟 ∫
𝐾𝑟0

𝜇0𝛽0

∆𝑃
𝑃𝑟

0

𝑑 (
∆𝑃

𝑃𝑟

) (49) 

∆𝑃

𝑃𝑟

= 𝑃𝐷(𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒) (50) 

𝑞 = 𝐶𝑃𝑟 ∫
𝐾𝑟0

𝜇0𝛽0

𝑃𝐷

0

𝑑(𝑃𝐷) (51) 

Recall that ∫ 𝑓(𝑥)
𝑏

𝑎
= 𝑓(𝑏) − 𝑓(𝑎);  𝑓(𝑎) − 𝑓(𝑎) = 0 

𝑞 = 𝑑(𝑃𝐷) (52) 

𝑑𝑞(𝑃𝐷)

𝑑𝑃𝐷

= [
𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0

]
1

 (53) 

𝑞1(𝑃𝐷) = [
𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0

] (54) 

Expanding using Taylor’s series, the differential becomes: 

𝑞(𝑃𝐷) = 𝑞(𝑃𝐷) + (𝑃𝐷 − 𝑃𝐷0
)𝑞𝐼(𝑃𝐷0

) +
(𝑃𝐷 − 𝑃𝐷0

)
2

2!
𝑞𝐼𝐼(𝑃𝐷0

) + ⋯ (55) 

𝑞(𝑃𝐷) = 𝑃𝐷𝑞𝐼(𝑃𝐷0
) +

𝑃𝐷
2

2!
𝑞𝐼𝐼(𝑃𝐷0

) +
𝑃𝐷

3

3!
𝑞𝐼𝐼𝐼(𝑃𝐷0

) + ⋯ (56) 

𝑞(𝑃𝐷) = 𝑃𝐷 (
𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0

)

1

+
𝑃𝐷

2

2!
(

𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0

)

1

+
𝑃𝐷

3

3!
(

𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0

)

𝐼𝐼

+
𝑃𝐷

4

4!
(

𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0

)

𝐼𝐼𝐼

+
𝑃𝐷

5

5!
(

𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0

)

𝐼𝑉

+ Σ (57) 

where Σ is the truncation term; 

𝑞(𝑃𝐷) = 𝑞0 (58) 

𝑃𝐷 =
𝑃𝑟 − 𝑃𝑤𝑓

𝑃𝑟

 (59) 

𝐴𝑡  𝑞0𝑚𝑎𝑥,𝑃𝑤𝑓 = 0, 𝑃𝐷 = 1. 

𝑞0𝑚𝑎𝑥 =
𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0

+
1

2!
(

𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0

)

1

+
1

3!
(

𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0

)

𝐼𝐼

+
1

4!
(

𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0

)

𝐼𝐼𝐼

+
1

5!
(

𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0

)

𝐼𝑉

+ Σ (60) 

𝑞0
𝑞0𝑚𝑎𝑥⁄ = 𝐶1𝑃𝐷 + 𝐶2𝑃𝐷

2 + 𝐶3𝑃𝐷
3 + 𝐶4𝑃𝐷

4 + 𝐶5𝑃𝐷
5 

Let Equation 60 be equal to m. 

𝐶1 =

𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0

𝑚
 

𝐶2 =

𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0
+

1
2!

(
𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0
)

𝑚
 

𝐶3 =

𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0
+

1
2!

(
𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0
)

1

+
1
3!

(
𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0
)

𝐼𝐼

𝑚
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𝐶4 =

𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0
+

1
2!

(
𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0
)

1

+
1
3!

(
𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0
)

𝐼𝐼

+
1
4!

(
𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0
)

𝐼𝐼𝐼

𝑚
 

𝐶5 =

𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0
+

1
2!

(
𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0
)

1

+
1
3!

(
𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0
)

𝐼𝐼

+
1
4!

(
𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0
)

𝐼𝐼𝐼

+
1
5!

(
𝐶𝑃𝑟𝐾𝑟0

𝜇0𝛽0
)

𝐼𝑉

𝑚
 

Solving for each coefficient, then we have; 

𝑄0

𝑄0𝑚𝑎𝑥
= 1 − 0.5372 (

𝑃𝑤𝑓

𝑃𝑟

) + 0.4882 (
𝑃𝑤𝑓

𝑃𝑟

)
2

− 1.1037 (
𝑃𝑤𝑓

𝑃𝑟

)
3

+ 0.3402 (
𝑃𝑤𝑓

𝑃𝑟

)
4

− 0.1857 (
𝑃𝑤𝑓

𝑃𝑟

)
5

 (61) 

The Equation 61 is the improved IPR model. 

3. Results and Discussion 

The Equation 61 is an improved inflow performance relationship model for solution gas drive reservoirs. It was 

observed that the accuracy of the model increases with increase in the number terms in the series expansion. However, 

the increase in accuracy is not so significant after the sixth term. Therefore, the series was truncated after the sixth 

term to avoid unnecessary computations.  

3.1. Comparison with Existing Models 

The improved model’s accuracy is compared with that of existing ones (Vogel’, Fetkovich’, Wiggins’ and Klins 

and Majher).  

Following the use of three case studies for validating the accuracy of the improved model, the actual data and the 

results obtained using the improved model, Vogel’s, Wiggin’s and Fetkovich’s were plotted and the coefficient of 

determination was employed to estimate the degree of deviation of each model from actual field result. Three different 

reservoirs were considered and some of the results obtained are shown in the plots below: 

CASE 1 

 

Figure 3. Plot of Normalized Pressure against Normalized Rate for Reservoir 1 

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

N
o
rm

a
li

ze
d

 P
re

ss
u

re

Normalize Rate

Comparison of Models For Reservoir 1

IMPROVED MODEL

WIGGIN'S

VOGEL



Journal of Human, Earth, and Future         Vol. 2, No. 2, June, 2021 

133 

CASE 2 

 

Figure 4. Plot of Normalized Pressure against Normalized Rate for Reservoir 2 

CASE 3 

 

Figure 5. Plot of Normalized Pressure against Normalized Rate for Reservoir 3 

3.2. Statistical Analysis 

The following tables show the results of the statistical analysis of the results obtained for each of the reservoirs 

using the new and existing models.  
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CASE 1 

Table 1. Statistical analysis of results obtained for reservoir 1 

Error analysis NEW MODEL VOGEL FETKOVICH WIGGINS 

R2 value 0.902 0.446 0.815 0.333 

CASE 2 

Table 2. Statistical analysis of results obtained for reservoir 2 

Error analysis NEW MODEL VOGEL FETKOVICH WIGGINS 

R2 value 0.950 0.928 0.915 0.908 

CASE 3 

Table 3. Statistical analysis of results obtained for reservoir 3 

Error analysis NEW MODEL VOGEL FETKOVICH WIGGINS 

R2 value 0.972 0.967 0.958 0.911 

4. Conclusion 

An improved inflow performance relationship model for solution gas drive reservoirs has been developed. The 

plots obtained when this model was applied to three different reservoir cases show a high degree of similarity to the 

ones obtained using the two widely accepted IPR models in the oil and gas industry. In addition, an approximately 

linear relationship was observed for the first two cases, while the third case shows a high degree of deviation from 

linearity. From these, we can conclude that for the first two cases, the reservoirs were still being produced above the 

bubble point pressure, while the third case is a typical scenario for a reservoir whose pressure had dropped below the 

bubble point pressure. Since the model performed excellently on both saturated and under-saturated reservoirs, we can 

conclude that the model can be used with a reasonable level of confidence to evaluate the performance of a solution 

gas drive reservoir at any stage of its production life. Furthermore, the statistical analysis of the results obtained using 

this model shows that it outperforms the existing inflow performance relationship models to which it was compared. 

Although more computationally intensive, this improved IPR model is recommended for solution gas reservoirs where 

accuracy is of paramount importance. 

5. Nomenclature 

𝑄𝑜 Oil, flow rate, STB/day 𝑃𝑒 External pressure, psi 

𝑃𝑤𝑓 Bottom-hole flowing pressure, psi N Oil viscosity, cp 

𝐵𝑜 Oil formation volume factor, bbl/STB h  Thickness, ft 

𝑟𝑒 External or drainage radius, ft 𝑟𝑤 Wellbore radius, ft 

p  Average reservoir pressure, psia 𝜃 Porosity, fraction 

𝜌  Density, lb/ft3 ν  Fluid velocity, ft/day 

Δt  Time interval, days or hrs. k  Absolute permeability, md 

𝑘𝑟𝑜 Relative permeability to oil J  Productivity index 

s Skin factor r  Radius, ft 

p Pressure, psia  𝑐𝑡 Total compressibility, psi 
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