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Abstract 

Recent data science advances in statistical classification techniques, and in particular, machine learning techniques, have 

resulted in more efficient and robust ways of continuously monitoring and managing processes to achieve continuous 

quality improvement. With increased automation and process data outputs in industrial processes, traditional univariate 

Statistical Process Control (SPC) is proving impractical in some aspects and slowly loosing overall relevance. The main 

aim of this study is to develop a predictive process control framework for online quality control. This framework was 

validated for efficacy when compared to univariate SPC in a selected metal rolling plant based in South Africa. This 

predictive process control framework employs data science approaches through machine learning techniques and 

algorithms from the Python programming language. The research methodology is a single case study. An experiment 

approach was undertaken at hot roughing and hot finishing processes. The results of the study revealed a marginal 17 

percent improvement in the predictive process control defect rate compared to the univariate SPC defect rate. The 

predictive model was based on the Random Forest algorithm and achieved an AUC of 0.84 compared to a 0.81 AUC for 

the neural network model. Factors found to have a positive impact on the success and sustainability of predictive process 

control were compliance with predictive model prescriptions, data science knowledge, senior management commitment, 

and the Extract, Transform, and Load (ETL) approach. These results contribute to the theory of online quality control and 

can be used as a guide by rolling mill process engineers and quality practitioners.  
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1. Introduction 

Over recent years, the metal rolling industry has seen a dramatic boom. Demand for rolled metal is at levels last seen 

before the 2008 recession, with United States of America (US) production estimated to have grown by 2.8 percent 

between 2018 to 2021 [1]. With increased demand for fabricated metal comes increased customer expectations that add 

complexity to the metal rolling process [1]. This complexity requires an appropriate response to ensure the industry is 

ready to meet the challenge. This response will undoubtedly involve continuous quality improvement of process outputs, 

with online quality control being central to delivering good-quality outcomes [1]. Univariate statistical process control 

(SPC) is the most common and widely used quality control technique in metal rolling [2]. SPC is defined as a quality 

control method that uses statistical techniques to monitor and control process variation in quality with the aim of ensuring 

that processes are efficient and operate effectively [3]. 
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For decades, SPC has been credited with assisting organizations to improve their quality, with the benefits of 

improvement having an overall impact on waste reduction and yield improvement [4]. However, criticisms of SPC 

as an effective quality control approach have grown steadily, with Bhote [5] arguing that Japan, the primary 

proponent of SPC, abandoned SPC in the 1970s due to its ineffectiveness. Furthermore, Gunter [6] argues that 

modern manufacturing and service processes have transcended the relevance and usefulness of SPC, with Woodall 

[7] emphasizing the need to move away from traditional univariate SPC to newer approaches that include 

multivariate methods. 

According to Singh & Gilbreath [8], multivariate methods are relevant in the digital age of big data because they 

provide alternatives that incorporate the interdependence and volume of process characteristics that were previously 

restricted. Multivariate analysis has recently migrated to the machine learning and artificial intelligence spaces, where 

it can be used to predict future performance. Multivariate process control using machine learning techniques is a new 

field of study with very limited framework references available. There is a knowledge gap in academia and industry 

about the structure that best delivers predictive process control using machine learning or artificial intelligence, but 

increasing data availability and computing power are allowing these structures to be tested and formulated [9]. With 

SPC becoming less relevant and data science (via machine learning and artificial intelligence) gaining relevance [10], 

the purpose of this study was to develop a predictive process control framework based on a multivariate approach for 

online quality control that will be used as a viable alternative to an increasingly irrelevant univariate SPC. The 

effectiveness of the predictive process control framework was evaluated as part of this study through a single case study 

experiment at a hot rolling plant known as Company X. The results of this study provide an academic and metal rolling 

industry reference that is currently lacking. The key questions associated with the study were: 

 How can a machine learning or artificial intelligence model be deployed to enable predictive process control 

framework for online quality control in a rolling mill? 

 What is the effect of predictive process control on the defect rate of a rolling mill? 

 Which aspects of predictive process control are applicable at different levels of a rolling mill? 

 Which factors greatly influence the outcome of the predictive process control deployment in a rolling mill? 

The following hypotheses were tested (where the defect rates of predictive process control and univariate SPC were 

tested): 

H0: There is no significant difference in the defect rate of traditional univariate SPC and predictive process control 

when defect rates of the two approaches are compared. 

Ha: There is significant difference in the defect rate of traditional univariate SPC and predictive process control when 

defect rates of the two approaches are compared. 

2. Literature Review 

2.1. Statistical Process Control 

Based on traditional quality management literature, quality control is a process that a company uses to ensure that 

product quality is maintained or improved [11]. Online quality control, on the other hand, focuses on the monitoring and 

surveillance of a process in order to detect anomalies and analyze and eliminate the causes of variation. 

SPC is the most widely used method for online quality control in industry [12]. It forms the foundational construct 

for predictive process control and this study. Traditional quality control methodologies tend to focus primarily on 

product quality control which emphasizes defect detection through inspection while SPC is process oriented [11]. 

Understanding and controlling variation is central to understanding SPC. Variation can be understood as the spread 

between parameter numbers in a data set and the most common measure of variation is standard deviation [13]. Shewhart 

recognized that variation is unavoidable in processes and that every process has inherent variation due to what he 

identified as chance causes (also known as common causes) and assignable causes (also known as special causes) [14]. 

There are numerous well documented successes, controversies and challenges associated with SPC. Others have even 

questioned the relevance of SPC in its current form. Gunter [6] argues that modern manufacturing and service processes 

have transcended the relevance and usefulness of SPC. Gunter [6] further argues that, Shewhart control charts have lost 

their relevance in the current environment and this will only get worse with the fourth industrial revolution (4.0.IR). 

Banks [15] is also very critical of continued SPC research by noting that the time has passed for university research 

on outdated concepts like SPC because continued research perpetuates the reputation of being out of touch with 
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relevant concepts. Woodall [7] offers a more balanced view in that he notes, SPC’s primary objective of 

understanding, modelling and reducing variability over time remains relevant and important. He further emphasizes 

the need to expedite the transition from classical methods to some of the newer approaches when appropriate. 

Montgomery & Woodall [10] highlights how recently developed methodologies that include multivariate methods, 

variance components, change-point techniques and regression-based methods can greatly increase the usefulness of 

SPC in some common situations. 

2.2. Predictive Process Control 

Predictive process control is a term that does not have a universal definition. Micronite [16] defines predictive process 

control as tool-centric predictions of process patterns and low-risk assurance of specification compliance, whereas Funk 

[17] defines predictive process control as a method for predicting the performance of a process outcome through separate 

measurements of selected fundamental properties of each process input parameter. In this study, predictive process 

control framework should be understood as the structured approach to deploying multivariate machine learning or 

artificial intelligence models of a process for online quality control. The proposed predictive process control framework 

is separated into people and data science aspects. The people aspects of the proposed predictive process control focus 

on: Organizational Culture; Leadership; Base Capabilities. 

The data science aspect of the proposed predictive process control focuses on predictive analytics using machine 

learning and/or artificial intelligence techniques. Data science is an approach or an emerging field that has not been 

completely defined. Skiena [18] defines data science as a field or approach that lies at the intersection of computer 

science, statistics and substantive application domains. Machine learning and high-performance computing technologies 

are categories that sit in the computer science pillar of data science. Applications domain refers to the business, industry 

or technical know-how to contextualize the data and to develop evaluation standards that assess when problems are 

adequately addressed. Data science application in manufacturing has several applications. These include predictive 

maintenance, predictive quality, sales forecasting, KPI forecasting and more. 

Despite the fact that data science has seen steady growth in the manufacturing industry over the last ten years, 

Artificial Intelligence (AI) is not new to the industry. AI software tools such as artificial neural networks, fuzzy 

logic, genetic algorithms, and support vector machines have been widely used in various manufacturing industries 

in a piecemeal manner over the last three decades [19]. Figure 1 depicts Alshraideh et al. [20] framework to 

predictive control of quality, which is limited to a decision tree approach to predicting quality using random forest 

techniques.  

The framework is general in the sense that it can be applied to any production process where profile data are available, 

and it can easily integrate process specific features based on process operator experience or commonly used 

transformations of observed signals as additional features. Alshraideh et al. [20] framework summarizes theories for 

predictive control coming from the following domains: 

 Data Engineering; 

 Computer Software (machine learning and artificial intelligence); 

 Computer Hardware; 

 Statistics; 

 Maths. 

The last ten years have seen a dramatic increase in the awareness of data science, the field has grown considerably 

in manufacturing. According to a Mordor Intelligence [21] report, big data analytics in manufacturing industry market 

was valued at USD 904.65 million in 2019 and is expected to reach USD 4.55 billion by 2025 at a compound annual 

growth rate of 30.9 percent over forecast period of 2020 to 2025. In another report, it was stated that the global smart 

manufacturing market size is estimated to reach USD 395.24 billion by 2025, registering a compound annual growth 

rate of 10.7% [22]. According to the IFS digital change survey to assess the maturity of digital transformation in a range 

of sectors, such as manufacturing, oil and gas, aviation, construction and contracting, 46 percent of the companies in all 

industries are looking to invest in big data and analytics [23]. Even with its growth, data science has challenges in 

industry, the biggest one being lack of subject matter expertise [24]. 
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Figure 1. Framework for predictive control model (Reprinted and adapted from Alshraideh et al. [20]) 

3. Proposed Framework 

Univariate SPC has historically been the preferred quality control approach of choice by manufacturers, but criticisms 

of its effectiveness and future relevance have grown steadily over the last 30 years [5]. Recent advances in statistical 

classification techniques, and in particular, machine learning techniques, have resulted in more efficient and robust ways 

of managing online quality control [19]. With very little industry and academia reference framework for effective 

deployment of machine learning models to predict quality, a predictive process control framework was proposed as part 

of this study. The proposed predictive process control framework and its elements are discussed in this section. 

3.1. Proposed Predictive Process Control Framework 

Based on previous research on the impact of variables (both dependent and independent) of variation, SPC, data 

science, leadership, organizational culture, and base capabilities, it is argued that they have a positive influence on the 

successful deployment of predictive process control. Figure 2 depicts a proposed predictive process control framework. 

This framework assumes a discreet manufacturing process with sensors or tags that measure process parameters during 

production. The proposed framework has ten aspects (with some aspects having multiple steps). The order in which 

these steps were executed to deliver optimal outcome is presented in section 5.4 of the results section. 



Journal of Human, Earth, and Future         Vol. 3, No. 3, September, 2022 

267 

 

Figure 2. Proposed predictive process control framework for rolling mill process 

The ten aspects of the proposed framework are described as follows: 

 Sensor/Tag Data – sensor or tag data refers to raw outputs from an equipment or hardware. These outputs are 

responses to some type of input from the physical environment. 

 Data Source – a data source refers to the initial location where the structured or unstructured sensor or tag data 

originates from. Data is typically stored in the form of a data table, a data object, or another format. 

 Data Engineering – according to Black [25], data engineering is the act of designing and constructing pipelines 

that turn data into a format that is highly useable by the time it reaches data scientists or end users. The first step 

in any data science or machine learning activity is the requirement that a data signal or data point be available 

before being fed into a data source that collects big data. The data source converts the signal or data point from 

sensors or tags into a format that can be used. 

 Extract, Transform and Load (ETL) – is the process of extracting data from source databases, transforming it 

into a uniform format for specific business objectives, and then putting the reformatted data into storage [26]. 

There are three steps in ETL. The first step is extracting data from data sources. The second step involves 

transforming the data into a usable format. The third and last ETL step involves loading the usable data into a data 

warehouse. 

 Feature Engineering – is the process of leveraging domain expertise to choose and convert the most important 

variables from raw data [27]. 

 Predictive Modelling – is a statistical technique that employs machine learning and data mining to predict and 

forecast likely future outcomes using current and historical data. 

 Engaging Leadership – this is management at all levels of an organization that can articulate its predictive process 

control objectives, drive active management routines to support delivery of these predictive process control 

objectives, ensure resources are available to execute aspects of predictive process control, and ensures these 

resources are challenged and supported to deliver on the objectives. There are multiple activities involved in this 

step that include, setting up the vision for predictive process control, setting up, leading routines that drive full 

adoption of predictive process control and ensuring continuous development of capabilities. 

 Organizational Culture – this is how things are done in a particular environment. 

 Base Capability – refers to the ability of an organization to execute certain basic functions well. 

 Predictive Process Control Interface – this refers to a computer monitor that shows operators the actual 

performance of the process as it runs, allowing them to maintain good performance or rectify process deviations 

as they occur. 

3.2. Proposed Maturity Assessment Model 

To help a rolling mill know how well they’re implementing the proposed predictive process control framework, a 

proposed maturity assessment tool has been developed by the researcher and is presented in Figure 3. The proposed 

maturity model consists of eight areas of focus. These eight areas are assessed using a score of one to five, with one 

being the worst and five being best. 
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Figure 3. Proposed maturity assessment model 

4. Research Methodology 

The research process applied in this study follows Saunders et al. [28] research onion approach. The research onion 

used in this study comprises of six layers or stages as shown in Figure 4. 

 

Figure 4. The research onion (Saunders et al. [28]) 

This study uses a positivist philosophical worldview to answer the research questions. The choice for a positivity 

paradigm is based on the scientific nature of the methods applied. Because this study is guided by theory and tests for 

hypotheses, the applied theory development is deductive. Furthermore, this research study used case study research 

design. The choice of a case-study method was based on the limited information and studies about predictive process 

control, this necessitating the need for an in-depth study in which careful consideration needed to be given to the 

development of predictive process control over time. The theory testing case study research method was used, and the 

research method for validating the proposed predictive process control framework was an experiment. The choice for 

an experiment is guided by the principle of wanting to manipulate one variable in order to observe a change in another 

variable, thereby being able to evaluate the relationship between variables. 
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Validation of the proposed framework was based on single-case study research, focusing on real-life events that 

demonstrated a single source of evidence at Company X. The theory testing procedure used for this study was divided 

into two phases: the pilot study (phase 1) and the main experiment (phase 2). Because activities do not always work out 

as planned, a pilot study was used to test the research methodology, tools for data collection and assumptions to ensure 

the complete study achieves its objectives [29]. A pilot study into the feasibility of the proposed predictive process 

control framework with sample data from the Hot Roughing Mill (HRM) and Hot Finishing Mill (HFM) preceded the 

establishment of the main experiment procedure and approach to validation. 396 tags or sensors for selected HRM and 

HFM data sets were extracted from the study site and tested using a predicting model that supports the proposed 

predictive process control framework. A total of 58 metal ingots or metal identifications (ids) were analyzed in the pilot 

study. The sample size was established using power analysis. 

For the purposes of this study, the population is defined as an organization (referred to as Company X). Company X 

denotes a single company with a single hot rolling plant. Company X is a company based in South Africa. Although the 

population of one organization may appear to be small, the test and control groups were large enough to test the 

hypotheses without jeopardizing the experiment's credibility. Quantitative sample design was used in this study, and the 

specific method used in order to establish sample size is called power analysis. Power analysis methods refer to a group 

of statistical methods used to determine the appropriate sample size for an experiment. These methods produce a power 

statistic, which quantifies the likelihood that the planned experiment will successfully detect a meaningful difference 

between the test and control populations, if one exists [30]. Random sampling is a key assumption in power analysis. 

The sample on which power analysis is performed is drawn through the random sampling process. The test and control 

groups in this study's experiment are made of the AA5182 alloy. Power analysis for the AA5182 alloy was performed 

using Python software, with multiple confidence intervals indicated by alpha, as shown in Table 1. Table 2 provides 

data that support the sample size calculation. 

Table 1. Power analysis table for AA5182 alloy 

Statistical Power Alpha Experiment sample size (Number of coils) 

0.8 0.01 80 

0.8 0.05 27 

0.8 0.1 23 

0.8 0.025 35 

Table 2. Input data table for power analysis of AA5182 alloy 

 
Number of coils evaluated in data modelling using 

historical data falling within defect free zone 

Number of coils evaluated in data modelling using 

historical data falling outside defect free zone 

Total number of coils evaluated in data 

modelling using historical data 

Count 267 2840 3107 

Mean 0.288 0.54 0.53 

Standard 

Deviation 
0.45 0.5 0.5 

Using the above AA5182 alloy power analysis table, to obtain a 95 percent confidence interval (alpha = 0.05) on the 

evaluation of test results, the number of sample metal ingots or metal ids required for the main experiment of the study 

to reach a statistically significant conclusion is 27. The initial sample size of 27 ingots or coils was increased by a factor 

of three to get to 81 ingots or metal ids as the final sample size to account for non-related process drifts. Feature selection 

was a key driver in the power analysis. The power analysis was carried out based on the significance of each feature in 

explaining defects in the hot rolling process. The feature importance rating is attributed to that feature, relative to all 

other features. Below list has examples of features that were included in the model: 

 HRM_TGT_EXIT_PROFILE1 

 HFM_TGT_GAUGE_TOLPOS1 

 HFM_TGT_TRIM_WIDTH1 

 BRUSH_ID_RIGHT_BOT 

 TEMP_EXIT_TRGT 

 DIAM_BR_BOT 

 HRM_TGT_EXIT_TEMP1 
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Prior to data analysis, data preparation was completed. This process entailed verifying the completeness and accuracy 

of collected data, as well as converting the data into a format that allows for analysis and interpretation. The Hot Mill 

process and control engineers validated the test metal ingots or coils that were hot rolled using data science approaches 

for the purposes of this study. The quantitative data was analysed using Minitab (version 21.1.0) statistical software 

package. Hypotheses testing for this study was performed using the two-samples proportion test. Field [31] argues that 

prior to testing hypotheses, a parametric or non-parametric test should be performed. For data sets with a normal 

distribution, a parametric test is performed. For data sets that do not have a normal distribution, a nonparametric test is 

performed. The data set for this study is binary and thus not normally distributed. The binary nature of the test also 

guided the choice of two-samples proportion test. 

5. Results 

The results were divided into the five sections. Section 5.1 reported on the machine learning or artificial intelligence 

(AI) deployment results, Section 5.2 reported on defect rate results, Section 5.3 reported results on applicable aspects at 

different management levels, Section 5.4 reported on results of factors that greatly influence the outcome of predictive 

process control and Section 5.5 presented hypotheses testing results. 

5.1. Machine Learning or AI Deployment Result 

Data for the experiment’s predictive model was extracted from seven processes shown in Figure 5. These processes 

are metal melting, metal holding, metal casting, metal scalping, metal reheat (pusher furnace), metal hot roughing 

(HRM) and metal hot finishing (HFM). The structure of the extracted data was such that it needed to support time-series 

modelling. Time-series modelling is a statistical technique that deals with data that is in a series of a particular time 

period or intervals. The machine learning process control prediction model was developed to predict HRM and HFM 

processes. The other five processes provided input process data that assisted with prediction of HRM and HFM 

processes. 

 

Figure 5. Data provision processes 

Figure 6 depicts the predictive model experiment timeline, including planned and actual durations. The only stage 

that deviated from the plan was ETL. Across all seven processes, the total number of variables extracted as part of ETL 

for feature engineering was 3100. 
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Figure 6. Experiment Timelines 

Figure 7 depicts the ETL architecture. The input data span was two years, beginning in 2020. The data was processed 
in daily batches. Before being loaded into the data warehouse, the extracted data was decoded and dumped to S3 as daily 
parquet files. There were over 1000 files and 1TB of decoded data, each with approximately 550 unique days. 

 

Figure 7. ETL architecture (Bennie Lombard [30]) 

The principal component analysis (PCA) technique was used to determine features for predictive modelling of this 
study's experiment. Python language was used for modelling. Variational auto encoders were also used in the feature 
engineering architecture (VAEs). VAEs generate a low-dimensional representation of a high-dimensional input data set. 
The input data classes are divided into clusters. The unified process parameters were reduced to two dimensions, 
providing representations of the state of the process for each metal ingot identification code (metal id) during the relevant 
production window. Because of the low dimensionality, it is possible to see the state of the relevant processes during 
the production of each metal id. 

Derived features were created using Fast Fourier Transform (FFT) to capture the necessary Fourier components for 
the model to approximate the input signals. For feature extraction, FFT features of each signal were extracted. This 
allowed for finding a compressed representation of the time series signals. For the unified view, six FFT components 
with the largest magnitudes were used. For both HRM and HFM, the upper and lower bound of the body and tail phase 
of the signals were extracted. Figure 8 depicts an FFT extracted for rolling speed at HFM. To drive the predictive model, 
395 features from both HRM and HFM were identified. 

 

Figure 8. Rolling Speed FFT 



Journal of Human, Earth, and Future         Vol. 3, No. 3, September, 2022 

272 

The derived features were classified as controllable or non-controllable. Controllable features are those that the 

rolling mill operator can directly control. Non-controllable features are those directly controlled by the mill control 

system without involving the operator. Following the establishment of the initial feature list, further investigation was 

carried out using the random forest algorithm to refine the final list features for accurately predicting quality on both 

HRM and HFM. Figure 9 depicts the random forest model results for accurate quality prediction. A supervised learning 

approach was used to apply the random forest model. The model represents the process control problem as a binary class 

classification problem where the class of interest is the process status being in-control or out-of-control. For accuracy 

indicator, area under the curve (AUC) is used to evaluate various classifiers in the experiment. The result associated 

with the model’s ability to accurately predict quality is an AUC of 0.84. The random forest predictive accuracy is slightly 

better compared to an artificial neural network model that was also used in comparison to random forest. The artificial 

neural network had an AUC of 0.81. Table 3 displays the top ten features, with ranking one having the greatest influence 

on prediction and ranking ten having the least influence. 

 

Figure 9. Random forest model for accurate quality prediction 

Table 3. HRM and HFM top ten features 

Ranking HRM/HFM Feature name and pass number 

1. HRM HMB Clean 

2. HFM Brush Press Exit OS Pass 3 

3. HRM SPD Strip Exit Pass 2 

4. HFM Brush Press Exit DS Pass 3 

5. HFM Ten Exit Min HD Pass 2 

6. HFM Tilt Force STD HD Pass 2 

7. HFM Soaps 

8. HFM Brush Press Entry DS Pass 2 

9. HRM Acid Split Viscosity 

10. HRM Particle Size (percent<2 micron) 
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Using the derived final list of features, a predictive machine learning model was created on Python using VAEs and 

the Keras algorithm to predict quality and determine prescriptions to correct process deviations. Time-series techniques 

were used in the modelling approach. The time-series data was stitched together into a unified view, making rolling pass 

performance easier to interpret. The experiment and modelling was limited to AA5182 alloy, 1620 mm ingot width, 2.3 

mm gauge and only looking at surface defects of broken surface. The minimum metal ids required to effectively train 

the model was 1000. The actual number of metal ids used to train the model was 3107. Figure 10 presents the predictive 

model results in the latent space. The model results shows areas of good quality and uplifted quality. 

 

Figure 10. Model Result: 1620mm ingot width areas of good quality and uplifted quality 

After establishing the area of uplifted quality, it was important to establish a cluster or region of process stability that 

gives the best quality outcome. This entailed searching for a region in the model results’ latent space with a low defect 

rate and relatively high density. This implies that there is a common set of process parameters for which good quality is 

achieved. By targeting the process parameters corresponding to this area, quality defect rate can be reduced to be lower 

than the global average. Process prescriptions were established for this region. Figure 11 shows the cluster of process 

stability that gives the best quality for 1620 mm width and 2.3 mm final rolled gauge. The cluster or region is depicted 

by a black polygon. The cluster was observed to show temporal stability with the region being visited consistently during 

production runs of 1620 mm width metal ids. 

 

Figure 11. Model Result: 1620 mm ingot width cluster/region of process stability and uplifted quality 

The predictive model prescriptions generated from the model were deployed for the 126 metal ids that formed the 

experiment. Eleven batches of 126 metal ids were rolled. The initial model prescriptions were generated from the 

predictive model and were pre-loaded for metal ids of the first batch on the control system prior hot rolling of the batch 

commenced. A user interface solution was developed and designed for follow-up batches to provide real-time 
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prescription ranking to HRM and HFM operators and process engineers. Figure 12 depicts the structure of the real-time 

user interface prescription report, while Figure 13-a and 13-b depicts the actual report. The user interface undertook the 

following steps everyone hour: 

 Pull all new raw values from data sources. 

 Upload all values into the data warehouse. 

 Build new unified view entries using the new raw values. 

 Generate ranking report on the most recent row of the unified view. 

 Serve the report to the HRM and HFM operators and process engineers. 

 

Figure 12. Front-end: User interface prescription report structure 

 

(a) 

 

(b) 

Figure 13. a) Front-end: User interface prescription report, b) Front-end: User interface prescription report 
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5.2. Defect Rate Results 

Using power analysis to determine the appropriate sample size for the experiment, the sample size was determined 

to be 81 metal ids and 126 metals ids were randomly experimented on. Predictive model defect rate result for surface 

defects of 1620 mm wide ingot is 3.17%. The aforementioned 3.17% was realized against a 45 percent compliance rate 

to predictive model prescriptions. Compliance is the measure of proportion of controllable parameters that are within 

their prescribed limits. The combined (historical and during experiment) surface defect rate for univariate SPC is 3.74%. 

The historical defect rate data was collected over an 18-month period. The aforementioned equates to a 17 percent 

difference in defect rate between predictive process control and univariate SPC. Figure 14 depicts a box plot with a 

comparison of surface defect rates. 

 

Figure 14. Surface defect rate comparison 

5.3. Applicable Aspects at Different Management Levels 

Prior to beginning the predictive process control experiment, roles and responsibilities were established. Each aspect 

of the predictive process control framework was assigned to a role. At senior management, the results show that 

development of the vision for predictive process control, accountability structures, continuous capability review and 

built, and driving accountability for predictive process control across all levels were key requirements and drivers for 

effective deployment of predictive process control. This finding is consistent with Antony's [12] MEST framework 

theories on management being essential to successful online quality control for SPC. Furthermore, the findings reveal 

that the technical aspects of the predictive process control framework reside at middle- and first-line management, with 

shop floor accountable for execution. 

The aforementioned results for all rolling mill levels identify the two dimensions of the proposed predictive process 

control framework, namely process and people. This further validates this study’s contribution in identifying 

organizational development and leadership gaps. 

5.4. Factors that Greatly Influence the Outcome of Predictive Process Control 

In the experiment of this study, the steps to deploying predictive process control framework followed the order below: 

 Run predictive process control awareness workshop with senior management; 

 Develop a vision for predictive process control at senior management; 

 Develop predictive process control project charter and get senior management signoff. Charter includes objective, 

metrics of success, risks and opportunities; 

 Develop change management plan; 

 Set-up effective structure to enable predictive process control; 

 Capability determination; 

 Identify resource(s) to close capability gap; 

 Run training and coaching sessions to close capability gap; 

 Data engineering (including ETL); 
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 Identify and set-up data warehouse; 

 Feature engineering and signoff; 

 Predictive modelling; 

 Development of user-interface; 

 Run predictive process control. 

All but one of the aforementioned steps of the deployment process (develop change management plan) required data 

science training to effectively execute predictive process control. Because of the training requirements, a capability 

assessment activity was required prior to step 1 to ensure key concepts that enable predictive process control were 

understood. The single most important factor influencing the outcome was predictive process control base capability. 

Another factor that influenced the experiment was senior and middle management buy-in to ensure effective structures 

were in place and that progress was tracked. The buy-in factor related to management physically participating in project 

activities to enable and guide the intervention. 

To understand how predictive process control capability requirements can impact its success, a gap assessment was 

conducted prior conducting the experiment. The approach towards the gap assessment applied skills requirements 

comparison. The skill requirements are divided into two categories: process control and rolling knowledge. The 

following steps were taken in the gap assessment process: 

 Standardise Process Control knowledge requirements for univariate SPC and predictive process control. The 

standard is based on literature review from chapter 2 of this study. 

 Standardise rolling knowledge requirements based on aggregated hot rolling skills matrix from Company X. 

 Compare Company X hot rolling job profile competency requirements against univariate SPC and predictive 

process control standard knowledge requirements. 

The aggregated comparison results of the baseline capability assessment show a 0 percent gap for univariate SPC 

and a 25.71 percent gap for predictive process control. This result supports Amruthnath's [24] contention that the most 

difficult challenge in deploying data science solutions in manufacturing applications is expertise in these techniques and 

their application in a real-world setting. 

5.5. Hypotheses Testing 

H0: There is no significant difference in the defect rate of traditional univariate SPC and predictive process control 

when defect rates of the two approaches are compared. 

Ha: There is significant difference in the defect rate of traditional univariate SPC and predictive process control when 

defect rates of the two approaches are compared. 

Although a normality test is not required for binary data, one was performed as a confirmatory step for both univariate 

SPC and Predictive Process Control. The probability plot for univariate SPC is shown in Figure 15-a. The univariate 

SPC p-value is less than 0.005, confirming that the data is not normally distributed. The probability plot for predictive 

process control is shown in Figure 15-b. Similar to univariate SPC, the predictive process control p-value is less than 

0.005, confirming that the data is not normally distributed. 

  
(a) (b) 

Figure 15. a) Univariate SPC probability Plot, b) Predictive process control Plot 
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The two-samples proportion test results are outlined in Table 4. The normal approximation may be inaccurate for 

small samples. 

Table 4. Two-samples proportion test results for hypotheses 

Method 

Event: 1 

p₁: proportion where Univariate SPC defect count = 1 

p₂: proportion where Predictive process control defect count = 1 

Difference: p₁ - p₂ 

Descriptive Statistics 

Sample N Event Sample p 

Univariate SPC defect count 321 12 0.037383 

Predictive process control defect 126 4 0.031746 

Estimation for Difference 

Difference 95 percent CI for Difference 

0.0056371 (-0.031346. 0.042621) 

CI based on normal approximation 

Test 

Null hypothesis H₀: p₁ - p₂ = 0 

Alternative hypothesis H₁: p₁ - p₂ ≠ 0 

Method Z-Value P-Value 

Normal approximation 0.30 0.765 

Fisher's exact  1.000 

At the 5 percent level of significance, H0 is accepted since the p-value is higher than 0.05 and therefore, the 

conclusion is that defect rates of univariate SPC and predictive process control are not significantly different. 

6. Conclusions 

In this study, a predictive process control framework for online quality control was proposed and validated in a hot 

rolling process. The results of the study point out the following themes: 

 Data engineering is an important first step in deploying a predictive process control model. ETL was found to be 

the most complex step in the data engineering stage. This finding corresponds to Buvaneshwaran's [32] eight steps 

for developing a machine learning model. According to Buvaneshwaran [32], once a problem or objective is 

defined and understood, the first and foundational step in a machine learning process is data engineering. 

 Feature engineering is an important second stage in deploying a predictive process control model. 

 At a compliance rate of 45 percent, the metal surface defect rate of predictive process control is marginally better 

by 17 percent when compared to the univariate SPC defect rate. These initial positive results are consistent with 

positive results reported for an artificial neural network case study by Cho at POSCO [19]. 

 Key predictive process control aspects for all the roles of the rolling plant or organization are different across the 

levels. Senior management has a special role in the initial stages of deploying the predictive process control 

framework. This role includes the responsibilities for creating the vision for predictive process control, creating an 

environment for the development of base capabilities, and creating an enabling environment for the successful 

deployment of predictive process control. Middle- and first-line management is responsible for the technical 

aspects of predictive process control, while the shop floor is responsible for execution and the feedback loop. This 

finding is consistent with Antony's [12] MEST framework theories on management being essential to successful 

online quality control for SPC, which are summarized in chapter 2 of this study. 

 The most important factor of the proposed predictive process control framework is base capability, followed by 

leadership (senior and middle management) commitment. The modelling steps follow once the two 

aforementioned factors have been executed correctly. This result supports Amruthnath's [24] contention that the 

most difficult challenge in deploying data science solutions in manufacturing applications is expertise in these 

techniques and their application in a real-world setting. 
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The aforementioned results cannot be generalized for all manufacturing processes but only for metal hot rolling 

processes. Because the study was limited to one case, there is an opportunity to conduct further studies at other hot 

rolling mills. Furthermore, future research can be conducted to determine the defect rate performance of the proposed 

predictive process control framework at various compliance rates, replicating the same approach across multiple defect 

types rather than just surface defects. Beyond metal rolling, further experiments would need to be conducted in other 

manufacturing industries to understand the effectiveness of the proposed predictive process control framework. 
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